

For a world in motion

THE CATALOGUE

Issue 2012/2013

Speciality Lubricants
Maintenance Products

33 YEARS OF TRIBOLOGICAL EXPERTISE – MADE IN GERMANY

OKS – your professional partner for chemotechnical special products

The OKS brand stands for high-performance products for reducing friction, wear and corrosion. Our products are used in all the areas of production and maintenance technology in which the performance limits of classic lubricants are exceeded.

Quality - Made in Germany

The continued success of OKS for more than 30 years is decisively characterised by the high quality and reliability of our products, as well as the fast implementation of customer requirements through innovative solutions.

The products developed by OKS engineers and chemists are produced under strict quality requirements in Maisach near Munich, Germany, our company's headquarters. Worldwide distribution is carried out just-in-time from Maisach, supported by a modern logistics centre.

The long-standing certifications by the TÜV SÜD Management Service GmbH in the fields of quality (ISO 9001: 2008), environment (ISO 14001: 2004) and work protection (OHSAS 18001: 2007) are proof of the high OKS quality standard.

A company of the Freudenberg Group

Since 2003 OKS Spezialschmierstoffe GmbH has been part of the international Freudenberg Group, with head-quarters in Weinheim, Germany. We utilize the comprehensive know-how and the innovative power of the Freudenberg Chemical Specialities (FCS) division for the further development of new products and markets to ensure the continued dynamic growth of our company in the future.

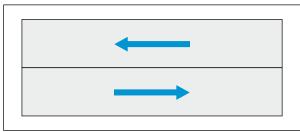
OKS - Partner to Trade

Our speciality lubricants and chemotechnical maintenance products are sold exclusively via the technical and mineral oil trades. The consistent strategy of "sales only via trade", the smooth processing of orders and our comprehensive technical service make us one of the preferred partners for demanding customers worldwide. Use our specialist's know-how. Put us to the test.

CONTENT

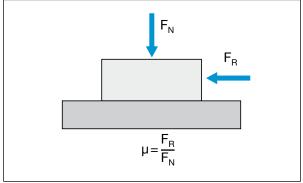
- 4_ Tribology and Lubricant Types
- 18_ Testing Procedures and Standards
- 23_ Technical Terms
- 24_ Mo_x-Additive Technology
- 25_ Speciality Lubricants for Food Processing Technology
- 26_ Lubricant Solutions for Critical Application Conditions
- 27_ OKS Selection Guide and Selection Tables
- 38_ Pastes
- 44_ Oils
- 54_ Greases
- 66_ Dry Lubricants
- **70** Corrosion Protection
- 72 Maintenance Products and Cleaners
- **78** Airspray-System
- 80_ ChronoLube-System for Automatic Relubrication
- 82 Lubricating Devices

We focus on the development of customer-specific lubricant solutions in close cooperation with our trade partners.


Experts from a wide range of different disciplines work in our laboratories with state-of-the-art systems and test equipment to modify existing or develop new products for special application cases.

BASIC KNOWLEDGE OF TRIBOLOGY

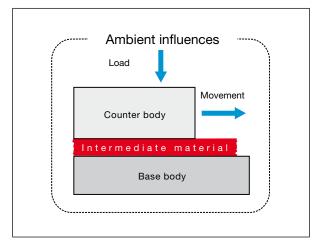
Reduction of friction and wear through optimal lubrication


Several billion Euros of economic losses are caused every year through friction and wear. In order to reduce these cost extensive tribological basic research is carried out. On this basis, companies then occupy themselves with specific knowledge, such as OKS Spezialschmierstoffe GmbH with the development of high-performance lubricants.

Friction

What is friction?

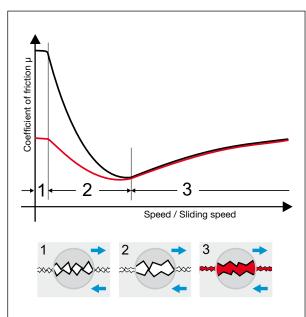
Friction is the mechanical resistance to the relative movement of two surfaces. Friction is usually undesirable in technical systems, because it is associated with energy loss, friction heat and wear.


Coefficient of friction

Determining the coefficient of friction

The following equation is used to determine the friction (to Coulomb).

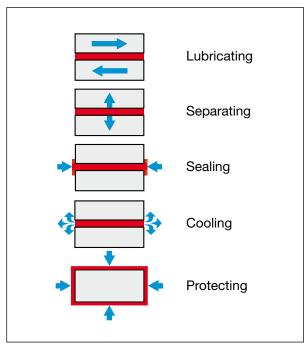
$$\frac{F_{_{R}}\left(\text{frictional force}\right)}{F_{_{N}}\left(\text{normal force}\right)} = \mu \; \text{(coefficient of friction)}$$


Friction can be divided into sliding friction, pivoting friction, rolling friction and rolling resistance friction.

Tribological system

The tribological system

For an optimal problem solution all the influencing variables in a tribological system have to be known. Allowances have to be made for the complex interactions of these factors. Ambient influences (dust, temperature or moisture) and structural factors (material, surface or geometry of the friction bodies) play just as great a role as stress factors (speed, pressure stress or vibrations) as far as selecting the correct intermediate material (= lubricant) is concerned.



Stribeck curve

Stribeck curve

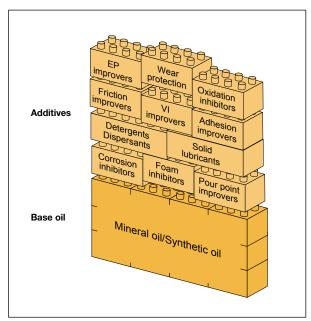
The course of the coefficient of friction of a friction bearing with oil or grease lubrication in the various friction and lubrication states can be described using the Stribeck curve as an example.

During the start-up phase the static friction is followed by the solid state friction (high coefficient of friction/high wear). As speed increases a partial separation of the sliding surfaces takes place in the mixed friction phase by the lubricating film (medium coefficient of friction/medium wear). The emergency running film that is formed by solid lubricants protects at exactly this point (see red curve). At high speeds a hydrodynamic liquid film separates the sliding surfaces completely from each other (as at aquaplaning). In this phase of liquid friction the lowest wear and the lowest friction is achieved.

Spectrum of tasks of a lubricant

Multiple function of the lubricants

The functions of a lubricant can be varied and, depending on the particular application, can be necessary alone or in combination. Besides the primary demand placed on the lubricant – maximum power transfer combined with a minimum of friction and minimum wear – it is often necessary to fulfil various secondary properties such as water resistance, chemical resistance, compatibility with plastics or corrosion protection.



Oils with high-performance additives for reliable lubrication

Oils dissipate heat well from the lubricating point. In addition, they have an notedly good creep and wetting behaviour. Therefore oil lubrication is often used at high temperatures or high speeds of rotation. Typical fields of application are gears, chains, friction bearings, hydraulics and compressors.

Characteristics of oils

Characteristics	Standard	Description
Viscosity	DIN 51 562 P1	Dimension for the inner friction of liquids
ISO VG	DIN 51 519	Classification of oils into viscosity classes based on DIN 51561
Operating temperature		Temperature range of the optimal performance
Flashing point	DIN ISO 2592	Lowest temperature at which the vapour-air mixture catches fire through extraneous ignition
Setting point	DIN ISO 3016	The lowest temperature at which the oil is still just capable of flowing

Structure of high-performance oils

Structure of high-performance oils

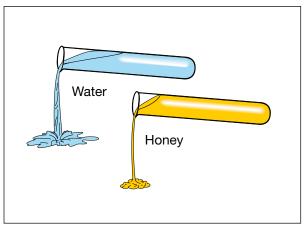
The additives play an important role in the formulation of a high-performance oil in addition to the careful selection of the base oil (type, viscosity) and has considerable influence on the price-performance ratio. Modern lubricating oils are conceived so that when the oil film is breached, the active ingredients form a protective film, so that the surfaces are protected against wear.

Properties of base oils

The base oil plays a decisive role in the selection of a lubricating oil. Mineral oils, synthetic hydrocarbons (Polyalphaolefines = PAO), ester, polyglycols and silicone oils differ notably in their physical properties and chemical behaviour.

Properties	Mineral oils	Synthetic hydro- carbons (PAO)	Ester oils	Polyglycol oils	Silicone oils
Density 20°C [g/ml] approx.:	0.9	0.85	0.9	0.9 – 1.1	0,9 – 1,05
Setting point [°C] approx.:	-40 → -10	-50 → -30	-70 → -35	-55 → -20	-80 → -30
Flashing point [°C] approx.:	< 250	< 200	200 → 270	150 → 300	150 → 350
Resistance to oxidation	-	+	+	+	++
Thermal stability	-	+	+	+	++
Compatible with plastics	+	+	-	type-dependent	+

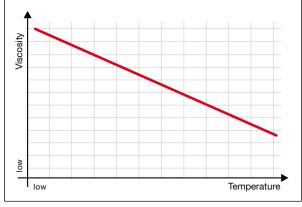
Compatibility of oils


The miscibility of different lubricating oils is influenced considerably by the base oils and has to be observed correspondingly when changing the lubricating oil, under consideration of the viscosity.

	Mineral oil	Polyal- phaolefines	Ester oils	Polyglycol oil	Silicone oil (methyl)	Silicone oil (phenyl)	Polyphenyl- ether oil	Perfluorpo- lyether oil
Mineral oil	•	-	-					
Polyalphaolefines	•	•	•					
Ester oils	•	•	•	•		•	•	
Polyglycol oil			•	•				
Silicone oil (methyl)					•			
Silicone oil (phenyl)			•			•	•	
Polyphenylether oil			•			•	•	
Perfluorpolyether oil								•

■ miscible □ partially miscible

Oils with high-performance additives for reliable lubrication



Viscosity

Viscosity – the dimension for the inner friction of liquids

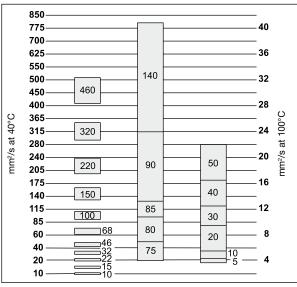
The choice of the viscosity of an oil depends on the area in which the lubricant is used. The following basically applies: Low viscosity for low pressure stress and high sliding speeds, high viscosity for high pressure stress, low sliding speeds and high temperatures. The viscosity can be determined with different measuring processes (see Test and measuring processes).

The kinematic viscosity in specified in mm²/s and is used for classification. The dynamic viscosity is specified in mPa s. The two viscosities can be converted into each other under consideration of the density with the equation: Dynamic viscosity = Density x kinematic viscosity.

Temperature dependence of the viscosity

Dependency of the viscosity from the temperature

The viscosity of an oil depends on the temperature, the pressure and shear stress as well as the time in which it happens. The most important influencing factor is the temperature. As the temperature increases, the viscosity decreases and vice versa, depending on the type of oil.


The classification of lubricating oils into viscosity classes is effected to ISO (DIN 51519) or SAE (Society of Automotive Engineers).

Kinematic ISO-VG	Viscosity (40°C) [mm²/s]
15	13.5 – 16.5
22	19.8 – 24.2
32	28.8 – 35.2
46	41.4 – 50.6
68	61.2 – 74.8
100	90 – 110
150	135 – 165
220	198 – 242
320	288 – 352
460	414 – 506
680	612 – 748
1,000	900 – 1,000
1,500	1,350 – 1,650

ISO viscosity classes to DIN 51519

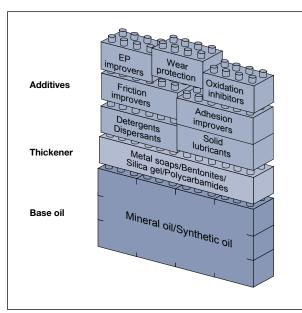
ISO-VG (Viscosity Grade) classes apply only for industrial lubricating oils. There are 18 kinematic VG classes from 2 mm²/s to 1,500 mm²/s. Determining of the viscosity is carried out at 40°C.

Viscosity classes to DIN 51519

Comparison of the viscosity classes to ISO-VG and SAE

Viscosity classes to SAE

Lubricating oils for vehicle gears and motors are classified into SAE viscosity classes. These range from 0-60 at motor oils and from 70-250 at gear oils. The viscosity values are measured at 100° C.



Greases for long-term lubrication under critical operation conditions

If, for structural reasons, no oil lubrication is possible or if a cooling function is not required, a lubricating grease is used in most cases. Greases consist of a base oil that is bound by a thickener (soap). This ensures that the lubricant remains at the lubricating point. There it ensures permanently effective protection against friction and wear and seals the lubricating point against external influences such as moisture and foreign matter. Greases are often used at rolling and friction bearings, spindles, fittings, seals, guides, but also at chains and gears.

Characteristics of greases

Characteristics	Standard	Description
Base oil viscosity	DIN 51 562 P1	Influences the speed range and load capacity of a grease
Drop point	DIN ISO 2176	Exceeding of this temperature results in destruction of the grease structure
Operating temperature	DIN 51805 – Min DIN 51821/2 – Max	Temperature range of the optimal performance at roller bearing greases
Speed parameter (DN value)		Maximum rotating speed up to which a grease can be used in a roller bearing
Consistency	DIN ISO 2137	Dimension for the stability of a grease (worked/unworked penetration)
NLGI grade	DIN 51818	Classification to the consistency classes to DIN ISO 2137
Four-ball test	DIN 51350	Determining of the wear protection and of the maximum load capacity of a roller bearing grease

Structure of greases

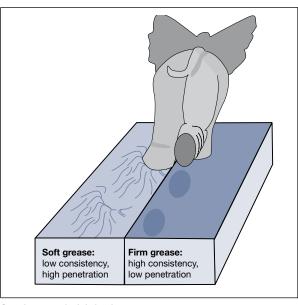
The main difference in the structure of greases compared to oil is the thickener which determines the typical performance features of a grease.

Structure of greases

Influence of the thickener on the performance features of a grease

Thickener (soap)	Operating temperature [°C] Mineral oil Synthetic oil		Drop point [°C]	Water resistance	Load capacity
Calcium	-30 → 50	not applicable	< 100	++	+
Lithium	-35 → 120	-60 → 160	170 / 200	+	-
Al-complex	-30 → 140	-60 → 160	> 230	+	-
Ba-complex	-25 → 140	-60 → 160	> 220	++	++
Ca-complex	-30 → 140	-60 → 160	> 190	++	++
Li-complex	-40 → 140	-60 → 160	> 220	+	-
Bentonite	-40 → 140	-60 → 180	without	+	-
Polycarbamide	-30 → 160	-40 → 160	250	+	-

Compatibility of greases


In addition to the compatibility of the base oils, the miscibility of the thickeners has to be taken into account when changing greases. An incompatibility has a negative influence on the performance of the lubricating grease. Modern lubricating greases are formulated so that their active ingredients form an emergency running lubricating film in case of critical stresses and ensure operational reliability.

	Ca-soap	Ca _x -soap	Li-soap	Li _x -soap	Li/Ca- soap	Na-soap	Bentonite	Ba _x -soap	Al _x -soap	Polycar- bamide
Ca-soap	•	•	•	•	•		•	•		•
Ca _x -soap	•	•	•		•		•	•		
Li-soap	•	•	•	•	•		•	•		•
Li _x -soap	•	•	•	•	•			•	•	
Li/Ca-soap	•	•	•	•	•		•	•		•
Na-soap						•	•	•		•
Bentonite	•	•	•		•	•	•	•		•
Ba _x -soap	•	•	•	•	•	•	•	•	•	•
Al _x -soap				•				•	•	•
Polycarbamide	•	•	•		•	•	•	•	•	•

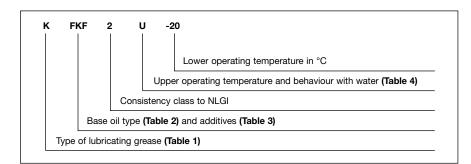
■ miscible

Greases for long-term lubrication under critical operation conditions

Consistency of a lubricating grease

At lubricating greases the consistency is the characteristic for assessing the strength of a grease. According to DIN ISO 2137 it is measured through the penetration depth of a standardised cone.

Consistency of a lubricating grease


Classification of greases to NLGI

The classification according to NLGI (DIN 51818) ranges from very soft (Class 000) to very firm (Class 6). Standard lubricating grease usually complies with the NLGI Class 2.

NLGI class	Worked penetration [mm/10]	Gear lubrication	Friction bearings	Roller bearings	Water pumps	Block greases
000	445 – 475	•				
00	400 – 430	•				
0	355 – 385	•				
1	310 – 340	•	•	•		
2	265 – 295		•	•		
3	220 – 250		•	•		
4	175 – 205			•	•	
5	130 – 160				•	
6	85 – 115 Unworked penetration					•

Designation and classification of lubricating greases to DIN 51502

In view of the multiple possibilities of application and different compositions, lubricating greases are classified and described according to DIN 51502 by various aspects such as type of lubricating grease, usability, consistency classes (NLGI) and operating temperatures.

Example of a classification to DIN 51502

Type of lubricating grease	Identifier
Lubricating greases for roller bearings, friction bearings and sliding surfaces (to DIN 51825)	К
Lubricating greases for closed gears (to DIN 51826)	G
Lubricating greases for open gears, toothings (adhesive lubricants without bitumen)	OG
Lubricating greases for friction bearings and seals (lower requirements than at lubricating grease K)	М

Table 1

Base oil type	Identifier
Ester oils	E
Fluorinated hydrocarbons	FK
Synthetic hydrocarbons	НС
Polyglycols	PG
Phosphoric acid ester	PH
Silicone oils	Si
Other	Х

Table 2

Additive	Identifier
EP additive	Р
Solid lubricants (e.g. MoS ₂)	F

Tahle	_

Identifier	Upper operating temperature [°C]	Behaviour with water to DIN 51807 Part 1*
С	+60	0 – 40 or 1 – 40
D	+00	2-40 or 3-40
E	+80	0 – 40 or 1 – 40
F	+00	2-40 or 3-40
G	+100	0-90 or 1-90
Н	+100	2-90 or 3-90
K	+120	0-90 or 1-90
М	+120	2-90 or 3-90
N	+140	2-90 or 3-90
Р	+160	
R	+180	
S	+200	to be agreed
Т	+220	
U	above +220	

Upper operating

Behaviour with water to

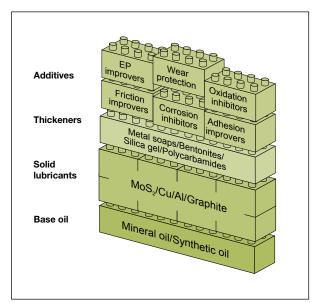
Table 3

^{*0 =} no change

^{1 =} minor change

^{2 =} moderate change

^{3 =} strong change



Pastes for easy assembly and dismantling

The structure of pastes basically corresponds to that of greases. However, the share of solid lubricants is notably higher. This ensures reliable lubricating, separating and corrosion protection effects also when used under extreme temperature and pressure conditions and aggressive media. Pastes are used at screwed connections as well as when pressing in pins and bolts and furthermore at gearwheels.

Characteristics of pastes

Characteristics	Standard	Description
Press-fit test		Provides information about the lubricating effect of pastes at very high pressure and low sliding speed (relevant for assembly pastes)
Thread friction coefficient	DIN EN ISO 16047	The friction coefficient μ when screws and nuts are tightened is determined on a screw test bench (relevant for screw pastes)
Breakaway torque	DIN 267-27	Ratio of the required breakaway torque when loosening the screwed connection to the tightening torque
Operating temperature		Lubrication: Oil and solid lubricants are effective Separation: After the oil has evaporated, separating effect through solid lubricants

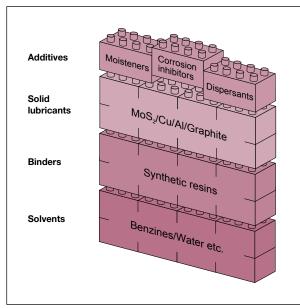
Structure of pastes

Structure of pastes

The structure of high-performance pastes is similar to that of greases. The main difference is the high portion of solid component that is typical of both assembly pastes (lubrication effect only) as well as for screw pastes (lubrication and separation effect).

Fields of applications of pastes

The field of application of pastes is determined to a great extent by the solid lubricant contained.


Solid lubricant	Maximum operating temperature [°C]	Field of application
PTFE	< 300	Mounting, medium influence
MoS ₂	< 450	Mounting, press-on processes
Aluminium	< 1100	High-temperature screwed connections
Copper	< 1100	High-temperature screwed connections, "Anti-Seize" paste, el. conductivity
"Oxide" ceramics	< 1400	Extreme-temperature screwed connections, stainless steel screwed connections

Dry lubricants – the alternative for special application cases

Dry lubricants can be classified into powdery solid lubricants, ceraceous sliding films and solid-content bonded coatings.

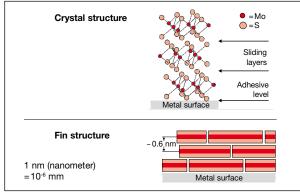
Structure of bonded coatings

Bonded coatings are solid lubricants (usually MoS_2 , graphite or PTFE) that are embedded in a binder. A solvent that evaporates during the curing or drying time is added for the distribution of the bonded coating.

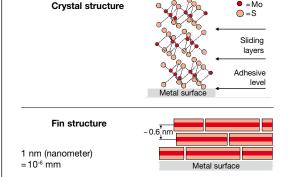
Structure of bonded coatings

Coating with a bonded coating is carried out after thorough preparation of the surface through immersion, spraying or painting. The dry bonded coating layer is between 10 and 20 µm thick. It withstands high pressure loads and extreme temperatures, does not take up soiling and is characterised by very high chemical stability and an excellent long-lasting lubrication.

Bonded coatings are used in many technical fields, e.g. for nuts, screws, bolts, washers, springs, sealing rings, gearwheels, slideways and threaded spindles.


In comparison to classical lubricants bonded coatings are characterised by

- ☐ Dry lubrication without oil and grease
- ☐ Clean lubrication without dirt adhesion
- ☐ Very low friction values can be achieved
- ☐ High temperature resistance
- No evaporation losses
- ☐ Use in vacuum possible
- ☐ Chemical-physical stability
- ☐ Effectiveness also at low sliding speeds
- ☐ Long-term and lifetime lubrication
- ☐ High cost efficiency


Classification of solid lubricants

Solid lubricants are used as fine powder and can be divided by their structure, as well as into chemically and physically active substances. The most common ones are listed here.

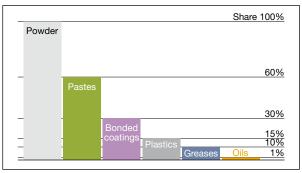
	MoS ₂	Graphite	Tri- calcium- phosphate	Zinc- pyro- phosphate	Calcium hydroxide	Aluminium	Zinc sulphide		Calcium fluoride	PTFE	PE
Structure-effective with layer lattice structure	•	•									
Chemically effective with layer lattice structure	•										
Chemically effective without layer lattice structure			•	•	•						
Physically effective with layer lattice structure						•	•	•	•		
Physically effective without layer lattice structure										•	•

Lubrication by MoS₂

Maximum share of solid lubricants in lubricant systems

slide to each other like a pack of cards.

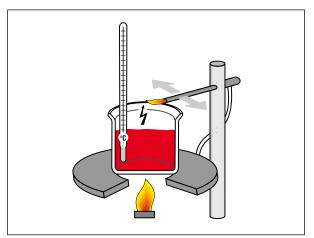
Molybdenum disulphide MoS₂


The best lubrication properties at metal pairs are achieved

ture and the chemically effective properties on the metal

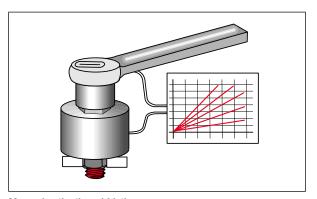
capacity and an excellent wear protection. Even thin films produce an extremely stable layer in which the MoS₂ fins

surface produce low friction, high pressure absorption


with MoS₂ (molybdenum disulphide). The layer lattice struc-

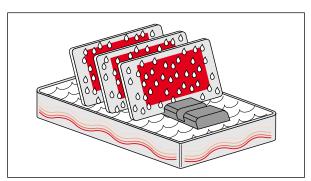
Share of solid lubricants

OKS lubricants – highest performance for maximum process reliability


Numerous test methods are used to examine and evaluate the various influencing variables of a tribological system for the development and quality assurance of lubricants. The collected characteristics describe the chemical/physical properties of a lubricant which allow statements about its possible suitability for a specific application.

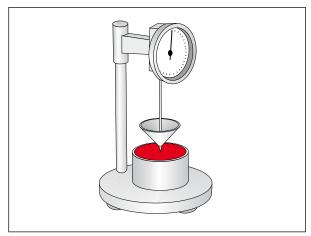
Determining the flashing point

Flashing point


The flashing point is a measurand at combustible liquids which allows the danger of fire to be assessed. Depending on the product type and height of the flashing point to be expected the most common measuring methods are closed crucibles (to DIN 51755) or open crucibles (to DIN ISO 2592).

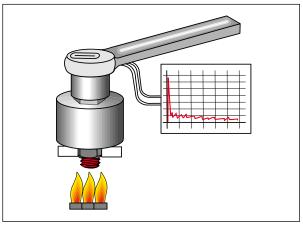
Measuring the thread friction

Thread friction


The thread friction is determined on a screw test bench. According to DIN EN ISO 16047 the coefficient of friction μ of a screwed connection is obtained when screws and nuts are tightened. Thread dimension, materials and type of the surface have to be specified.

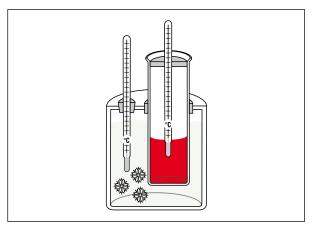
Condensed water test

Condensed water test


The condensed water test is one of several examinations carried out to assess a protective layer as corrosive influences (DIN 50017 – KTW condense water temperature alternating climate) and defines the test procedure in a climatic chamber at alternating climate. The result is the number of hours until traces of rust arise.

Measuring the consistency

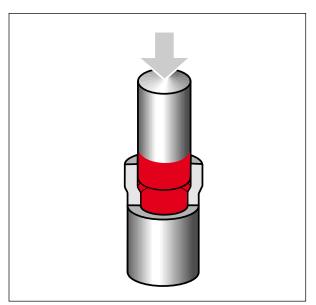
Consistency


The consistency of a lubricating grease is measured with a penetrometer to DIN ISO 2137 whereby the grease is worked before measuring in order to imitate the stress in a bearing. The penetration depth of a cone allows the allocation to a consistency class to NLGI (DIN 51818).

Determining the breakaway behaviour

Breakaway behaviour

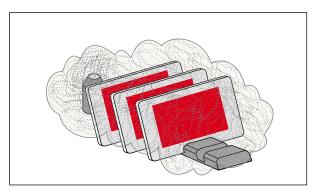
Breakaway behaviour, the ratio of the loosening torque to tightening torque, is determined for high-temperature screw pastes after screws M10 (or M12), material A2-70, have been tightened with 40 Nm (or 70 Nm) and have been subjected to a temperature between +200°C and +650°C for 100 hours.



Determining the pour point

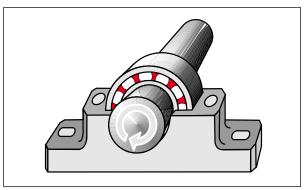
Pour point

The pour point of an oil is measured to DIN ISO 3016. It lies some °C under the recommended lowest operating temperature.


OKS lubricants – highest performance for maximum process reliability

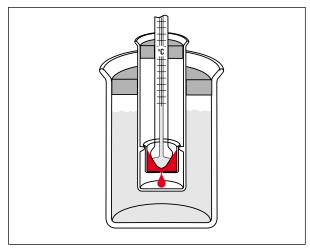
Press-fit test

Press-fit test


The press-fit test provides information on the behaviour and the adhesion of solid lubricants under very high pressure and low sliding speeds. The coefficient of friction μ is measured and noted whether stick-slipping occurs. Both results are important for the applications during mounting work (e.g. press manufacture) or at slideways and guides (e.g. machine tools).

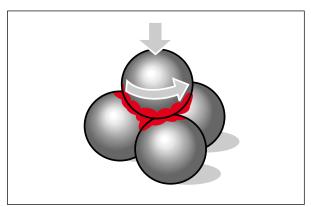
Salt spray test

Salt spray test


The salt spray test simulates a salty climate to DIN EN ISO 9227 NSS (ex DIN 50021 SS), whereby coated plates are subjected to a defined salt spray. A check is carried out after how many hours traces of rust arise.

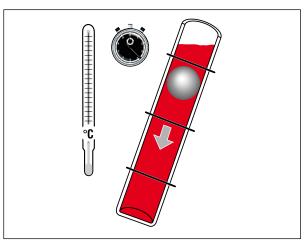
SKF-EMCOR process

SKF-EMCOR process


This process is used to assess corrosion-preventive properties of roller bearing lubricants. In the process water is added to the grease and examined for corrosion self-aligning ball bearings with defined running duration, speed and specified standstill periods to DIN 51802. If there is no corrosion at the visible inspection of the test rings, the degree of corrosion is 0. At very strong corrosion the maximum note is 5.

Measuring the drop point

Drop point


The drop point (in °C) is the temperature of a lubricating grease at which liquefaction occurs, measured to DIN ISO 2176. The drop point lies notably over the recommended upper limit of the operating temperature. However, certain grease thickeners do not liquefy, meaning that they are without a drop point.

Four-ball test rig

Four-ball test rig

The four-ball test rig is a testing device for lubricants used at high surface pressures in the mixed friction range. According to DIN 51 350, the four-ball test rig consists of a rotating moving ball which slides on three fixed balls. During the test for the maximum load-bearing capacity of the lubricant, a test force acts on the moving ball, which is increased in steps until the four-ball system is welded together as a result of the friction heat produced. In another four-ball test method the wear value of a lubricant is determined under defined test conditions (test force, speed, time).

Measuring the viscosity

Viscosity

The viscosity of an oil is determined with different measuring instruments depending on the type of product. A falling-ball viscometer is used to fulfil the specifications to DIN 51562-1 or similar methods. The specification of the kinematic viscosity V (ny) [mm²/s] is effected at +40°C. The value, for example at +100°C, is often also of interest, so that the drop in the viscosity at higher temperatures can also be assessed.

OKS lubricants – highest performance for maximum process reliability

DN factor

The DN factor or rotating speed factor is a guide value up to which rotating speeds lubricants can be used in roller bearings.

Evaporation loss

The evaporation loss is of interest particularly at high-temperature lubricants. According to DIN 58397 it is examined at high temperatures for a specified period. The loss of evaporated oil as a % by weight should be as low as possible.

FZG torque change test device

With the FZG torque change test device oils and greases are examined in particular with regard to their suitability as lubricants in closed gears. The wear is determined after every load level and the so-called "damage load level" specified as the result. The test method is described in DIN 51354.

Layer thickness (corrosion protection)

The layer thickness has a decisive influence on the duration of the corrosion protection. To this purpose various measuring methods are used which specify the layer thickness in μ m, depending on the type of protective layer.

Lubrimeter test

The Lubrimeter test is a test device with which the coefficient of friction, wear and operating temperature of lubricants is measured for a specific period at changing loads and sliding speeds with different materials.

Oil separation

The oil separation is measured to DIN 51817 as a % by weight. In the process pressure and temperature is applied to the lubricating grease to be tested.

Resistance to oxidation

The resistance to oxidation is a measure for the resistance against reactions with pure oxygen. According to DIN 51808 the grease is subjected to increased pressure together with the oxygen for a specific period (e.g. 100 hours) and temperature (e.g. +99°C or +160°C). The test result is the drop in pressure of the oxygen in Pa (Pascal) as a measure for the degree of oxidation.

FURTHER TECHNICAL TERMS

Ageing

Chemical changes to material through the influence of heat, light and oxygen across the operating time

Corrosion

Reaction of a metal with its environment which results in a change and impairment of the function of a component

DVGW

Deutscher **V**erein des **G**as- und **W**asserfaches (German Technical and Scientific Association for Gas and Water)

Emergency lubrication

Is achieved through solid lubricants when insufficient lubrication occurs at grease or oil lubricants

EP additives

Lubricants with Extreme Pressure additives in order increase the pressure resistance and the wear protection properties

Frictional corrosion

Corrosion that occurs at fits that are subjected to vibrations with micro frictional movements.

Immediate rust formation at abrasive particles of steel

ISO

International Standardization Organisation

KTW

Approval for plastics in the drinking water sector

I GA

Landesgewerbeanstalt Nürnberg with its institute for food chemistry

Silicone oils

Are produced through synthetic processes. They have particularly good viscosity temperature characteristics, are resistant at low and high temperatures and against ageing. Excellent separating properties. Outstanding lubricant for plastics and elastomers Designations such as polydimethylsiloxane or polyphenylmethylsiloxane specify the special structure of the molecule groups.

Solvent

Liquids that dissolve other materials without chemical changes

Stick-slipping

Occurs at slow movements and insufficient separating effect of the lubricant, since the initial friction is higher than the movement friction.

Synthetic oils

Produced through chemical processes in contrast to oils from Nature – mineral oils, vegetable oils and animal oils. Allowing certain advantages to be achieved, such as low tendency to coking, low pour point, good resistance to chemicals and often excellent viscosity temperature characteristics. Synthetic hydrocarbons, ester, polyglycols, fluorinated oils and silicone oils are used e.g. for lubricants

VCI

Volatile Corrosion Inhibitor is an environmentally friendly corrosion protection additive

Wear

Arises when the lubricating film is breached, so that the sliding partners come into contact and rub against each other

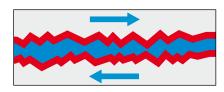
White oil

Paraffinic mineral oil, highly refined, to remove instable components. White oils are used, for example, in lubricants for medical applications

INCREASE IN PERFORMANCE THROUGH ADDITIVES

Intelligent additive technology with Mo_x-Active: Reducing cost and environmental impact

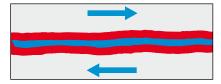
The task of the additives is to optimise lubricants for the respective application with regard to corrosion and wear protection, emergency running properties, oxidation stability, temperature characteristics and wetting behaviour. The careful selection and the intelligent combination of the additives guarantee the high performance of OKS speciality lubricants.


Mo_x-Active additive

OKS speciality lubricants with the Mo_x-Active additive technology developed by OKS contain molybdenum complex compounds for increased performance.

Effect on the surface

Lubricants with Mo_x-Active are responsible for the smoothing of the metal surfaces at the lubricating points. Intelligent additives support and accelerate the flow smoothing process on the otherwise rough surfaces and effect a tribological surface coating. The run-in times can be shortened considerably.


Phase 1

Mo_x-Active is deposited under pressure at the stressed metal surface of the lubricating point.

Phase 2

As the stress increases, a pressure-stable and effective lubricating protective layer is formed and increases the pressure absorption capacity. Friction and wear are reduced considerably.

Phase 3

Mo_x-Active supports and accelerates the flow smoothing process of the metal surface. Best results are achieved here in combination with MoS₂. This structural change produces a tribological surface coating with extremely low coefficient of friction and high wear protection.

Cost reduction and reduction of environmental impact

OKS speciality lubricants with Mo_x-Active reduce the operating costs, increase the quality in production and reduce the environmental impact through lower lubricant consumption and lower energy requirements.

SPECIALITY LUBRICANTS FOR FOOD PROCESSING TECHNOLOGY

NSF certified lubricants for safe food processing and production

OKS speciality lubricants for food processing technology can be used in all areas in which human beings could come into contact with lubricants. Application of these lubricants is not limited to the food processing industry. Typical users are amongst others manufacturers of food packaging, machine and system builders for the food processing industry, producers of domestic appliances as well as the toy and pharmaceutical industries.

With OKS speciality lubricants on the safe side

There is currently no binding European or international legislation for lubricants approved for use in the food processing industry. As a result, in food processing technology and related areas, it is primarily the US regulations, which are the world's strictest, that are utilised.

Positive list of the FDA

This list of the FDA (Food and Drug Administration) that is recognised around the world contains all ingredients permissible in lubricants approved for use in food processing. All lubricants tested by the NSF (National Sanitation Foundation) are published in the white book of the NSF based on this list. You can find the list of these lubricants at www.nsf.org in the chapter entitled "Nonfood Compounds Listings Directory", arranged by company name.

NSF classification

The classification NSF H1 stands for lubricants which may be used when contact with food cannot be excluded in the event of failure.

The lubricants that may be used when contact with food is technically excluded are summarised under NSF H2.

EC Directive 93/43/EEC (issued 14/6/93)

This directive requires food processing plants to use the HACCP (Hazard Analysis Critical Control Point) method. This preventative system ensures that every contamination-relevant step in the manufacturing process of a food processing and production can be identified and monitored. Even if this directive contains no regulations with regard to the ingredients of lubricants approved for use in food processing, the HACCP method describes the use of lubricants in food processing technology.

By using OKS speciality lubricants for food processing technology, you ensure compliance with national and international regulations – because of your responsibility to people.

LUBRICANT SOLUTIONS FOR CRITICAL APPLICATION CONDITIONS

OKS experts stand for innovative ideas and product concepts

Movement without friction is a dream of mankind. But friction still remains a fact of life. To ensure "frictionless" running of your machines, OKS can provide a lubricant solution for almost any application. Whether the lubrication of roller bearings, chains or slideways, under extreme conditions of use or under the influence of aggressive media – with lubricants from OKS you solve your tribological problems safely and reliably.

Extreme conditions of use

Ever more productive machines, combined with extended operating lives push materials and machine elements to their stress limits. OKS offers lubricants that unfold their full performance even under these conditions. Various OKS speciality lubricants resist extreme temperatures, high temperature fluctuations or high pressures.

Plastic lubrication

New design developments mean that friction pairs are increasingly being used that place particular requirements of the compatibility of the lubricants. Special alloys or ceramic elements are used. Material combinations of plastic/metal and plastic/plastic are increasingly also being used. OKS provides lubricants that are compatible with many materials.

Lubrication under the influence of aggressive media

Whether in permanent use with contact to acids or lyes at columns, boilers or pipings in process engineering industries, at corrosive influences, at outdoor weathering or under the influence of salt water, your plants remain completely operational also under these conditions thanks to OKS speciality lubricants.

Speciality lubricants for food processing technology

OKS develops a wide range of lubricants specially for the demanding hygiene requirements in food processing technology.

OKS SELECTION GUIDE

Fields of Application

Roller bearings

Friction bearings

Pivoting bearings

Chains

Levers

Valves

Measuring devices

Dust removal

Precision mechanics

Hinges

Leak detection

Belt drives

Offshore

Storage/Shipping

Steel construction

processing

Rust remover

Foam cleaning

Press fittings

Moulding

Camshafts

Springs

Brakes

Hydraulics

Wire cables

Compressors

Separating mould release

Separating weld release

Cleaning

Foam forming

Linear guide

Threaded

Chucks

connections

Slideways

Open gears



Closed gears

Worm gears

Cooling

Cutting tools

Effects of water

Properties

High temperatures

Low temperatures

High speeds

Heavy loading

Corrosion protection

Effect of chemicals

(0)

Compatible with

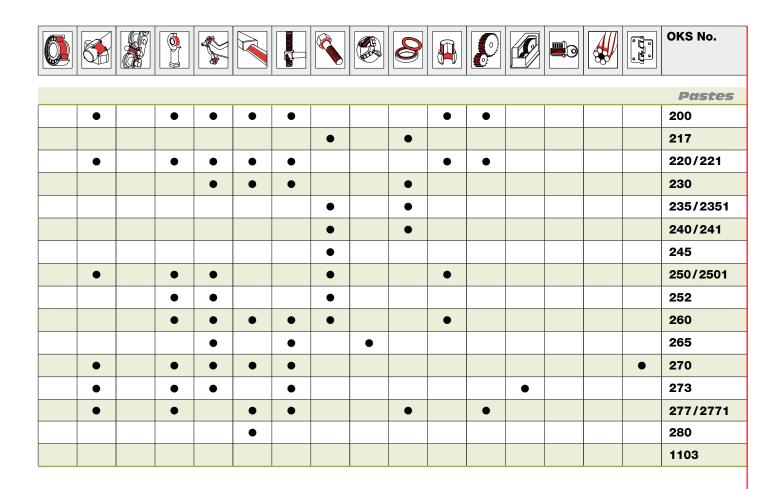
Long-acting

Environmentally friendly

Workplacefriendly

NSF certified

Sprayable with Airspray-System



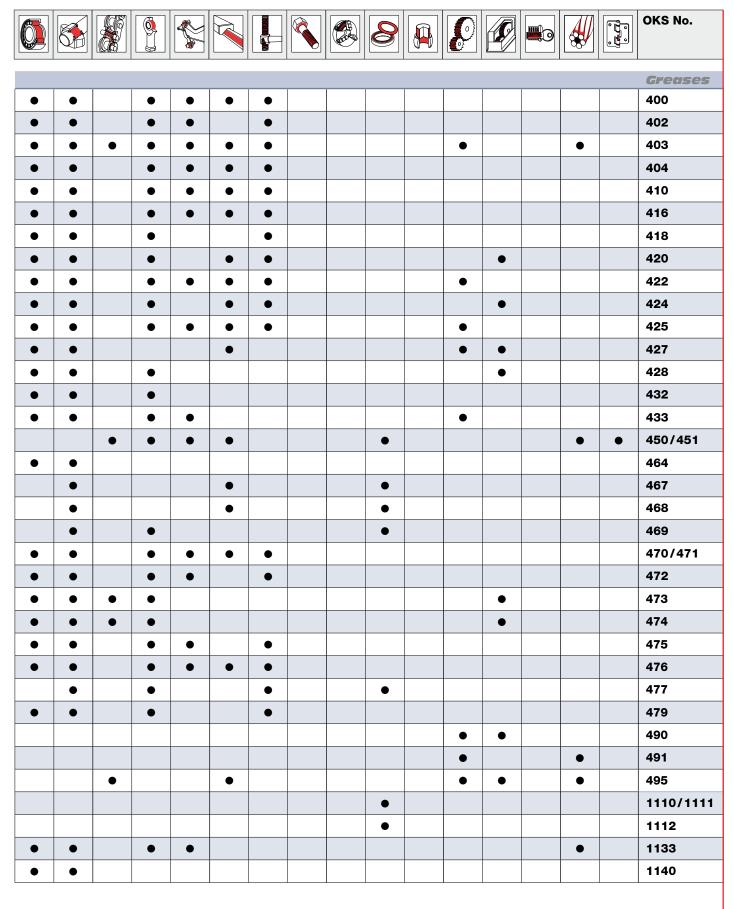
Electrical engineering/ Electronics

SELECTION TABLE PASTES

	OKS No.	★		mis. O mare			\(\tag{\tau}\)		A	33	pro plastic	NSF	ELECTRONICO	pro Airapray
	Pastes													
	200				•									
	217	•			•									
7	220/221				•									
	230	•			•									
	235/2351	•												
7	240/241	•												
	245	•				•		•						
	250/2501	•			•	•						•		
	252	•			•	•						•		
	260				•									
	265				•			•	•					
	270				•			•						
	273		•			•					•			
	277/2771				•	•	•	•			•			
	280	•												
	1103	•	•						•				•	

SELECTION TABLE OILS

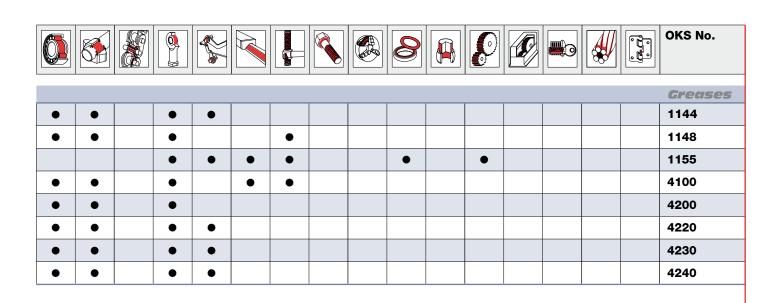
	OKS No.	□ max.													
	OKS NO.	+		STITLE OF THE STATE OF THE STAT					$\ $		pro plastic	(NSF.)		ELECTRONIC	pro Airapray
	Oils														
	300				•										
	310	•			•										
1000	335	•			•										
	340/341	•		•		•	•	•							
	350	•			•			•							
11/15	352/3521	•			•			•							
	353	•			•			•							
	354/3541	•			•		•	•							
	360/361					•	•	•		•					
	370/371					•		•				•			•
	387	•			•							•			
	390/391														•
	600/601					•	•	•		•					•
	640/641		•			•									•
	650														
	670/671				•		•								
	700/701		•			•		•							•
	1000	•	•								•				
	3570	•					•					•			
	3710		•						•			•			
	3720							•		•		•			
	3725							•		•		•			
	3730							•		•		•			
	3740							•		•		•			
	3750/3751					•		•		•		•			
	3760					•		•		•		•			
	3770							•		•		•			
	3775							•		•		•			
	3780							•		•		•			
	3790											•			
	8600/8601	•											•		



								8						OKS No.
														Oils
	•				•	•				•				300
	•	•	•	•	•	•								310
	•		•		•	•	•							335
		•		•								•	•	340/341
	•	•		•	•									350
	•	•	•	•	•	•						•	•	352/3521
	•	•	•	•	•	•						•	•	353
	•	•	•	•	•	•						•	•	354/3541
														360/361
	•	•		•				•			•	•	•	370/371
	•	•	•	•	•	•								387
														390/391
	•	•	•	•								•	•	600/601
			•	•	•						•	•	•	640/641
		•		•									•	650
	•	•	•	•	•	•						•	•	670/671
		•		•	•						•	•	•	700/701
				•	•			•					•	1000
		•	•		•									3570
	•	•		•	•									3710
•	•	•								•				3720
•	•	•								•				3725
•	•	•								•				3730
•	•	•								•				3740
	•	•	•	•	•							•	•	3750/3751
	•	•	•	•	•					•		•	•	3760
	•	•			•									3770
	•	•			•									3775
	•	•			•									3780
		•		•										3790
	•	•	•	•			•					•	•	8600/8601

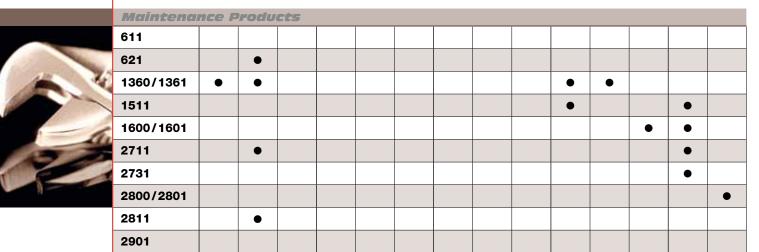
SELECTION TABLE GREASES

	OKS No.	+		mir. O max.			***			43	pro plastic	NSF.		ELECTRONIC	pro Alifabray
	Greases														
	400									•					
	402														
	403					•	•	•		•					
1	404	•								•					
	410				•										
	416		•	•											
	418	•													
	420	•			•			•							
	422	•		•			•	•		•					
	424	•			•	•									
	425	•		•			•	•		•					
	427	•			•	•	•	•							
	428				•										
	432	•					•	•							
	433				•					•					
	450/451	•				•	•	•							
	464	•	•							•	•			•	
	467									•	•				
	468									•	•	•			
	469									•	•	•			
	470/471									•		•			
	472		•	•		•					•	•			
	473					•		•				•	•		
	474					•	•	•					•		
	475		•	•		•					•	•			
	476							•				•			
	477								•			•			
	479	•						•				•			
	490	•		•	•	•	•								
	491				•	•	•	•							
	495				•		•								
	1110/1111	•						•		•		•			
	1112							•	•		•				
	1133		•				•	•			•				
	1140	•						•							

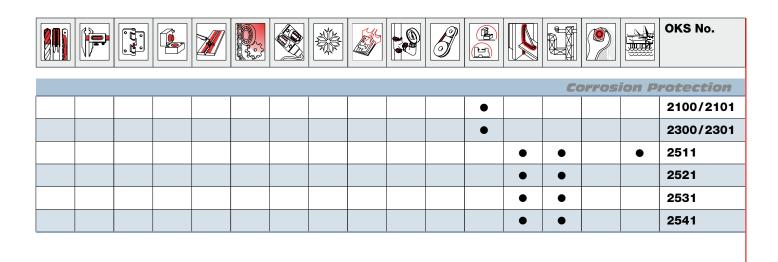

SELECTION TABLE GREASES AND DRY LUBRICANTS

OKS No.	+					****				pro plastic	NSF		ELECTRONIC	pro AIRSPRAY
Greases														
1144	•					•	•			•				
1148	•								•	•				
1155	•	•				•	•			•				
4100				•										
4200	•					•	•							
4220	•			•				•		•	•			
4230	•			•				•		•	•			
4240	•			•				•	•					
	Greases 1144 1148 1155 4100 4200 4220 4230	######################################	######################################	### ##################################	Greases 1144 1148 1155 4100 4200 4220 4230 • •	Greases 1144 1148 1155 4100 4200 4220 4230 • • • • • • • • • • • • • • • • • • •	Greases 1144 1148 1155 4100 4200 4220 4230 6 6 6 6 6 6 6 6 6 6 6 6 6	Greases 1144	Greases 1144	Greases 1144 1	Greases 1144 • • • • • 1155 • • • • • 4100 • • • • • 4220 • • • • • • 4230 • • • • • • •	Greases Instruction <	Greases Instruction <	Greases Instruction <

Dry Lub	pric	ants										
100		•	•	•								
110/111		•	•	•								
500				•				•				
510/511		•	•	•				•				
530		•		•								
536		•			•					•		
570/571		•	•				•					
575		•	•				•					
589		•	•	•				•				
1300/130)1		•		•	•			•			
1710											•	
1750											•	
1765											•	



											 Dry L	vbricants
			•				•					100
		•	•	•	•			•				110/111
		•	•	•	•			•		•		500
•		•	•	•	•							510/511
•	•	•	•	•	•			•	•			530
	•		•	•								536
		•	•	•	•							570/571
•		•	•	•	•	•					•	575
•		•	•	•	•			•			•	589
			•	•	•	•	•			•	•	1300/1301
						•	•					1710
						•	•					1750
						•	•					1765


SELECTION TABLE CORROSION PROTECTION, MAINTENANCE PRODUCTS AND CLEANERS

	OKS No.	♣		mir. Omar.		***		48	pro plastic	NSE	ELECTRONIC	DIO AIRBPRAY
	.											
	Corrosion	Prot	ectio	n								
	2100/2101				•	•	•					
1	2300/2301				•	•	•					
	2511	•			•							
	2521	•			•							
	2531	•	•		•							
٠	2541				•	•						
•												

Cleaners														
2610/2611														•
2621													•	
2631														
2650											•			
2660/2661														•

Maintenance Products									Products				
	•										•		611
											•		621
		•	•										1360/1361
		•	•										1511
		•	•										1600/1601
													2711
							•						2731
								•					2800/2801
								•					2811
									•				2901

								Cleaners
		•						2610/2611
			•					2621
								2631
		•						2650
		•						2660/2661

PASTES FOR EASY ASSEMBLY AND DISMANTLING

Product	Designation	Fields of Application	Purpose
OKS 200 Mo _x -Active	MoS ₂ Assembly Paste		Assembly lubrication for press-on processes Run-in lubrication of highly loaded sliding surfaces Prevents wearing, stick-slip, seizing, run-in damage or pitting Lubricant for difficult moulding processes For universal use
OKS 217	High-Temperature Paste, high purity		Assembly lubrication of screw threaded connection made of high-strength steel, at high temperatures in aggressive environment Optimum ratio of screw tightening torque to achievable pre-tension No burning together and rusting on No reaction with metals For use in the chemical industry
OKS 220 OKS 221* Mo _x - Active	MoS₂ Rapid Paste		 Assembly lubrication for press-on processes Run-in lubrication of highly loaded sliding surfaces Lubricant for difficult moulding processes Effective immediately through high MoS₂ share Rubbing in the paste not required High-quality assembly paste
OKS 230	MoS₂ High- Temperature Paste		For high-temperature applications up to 450°C (dry lubrication from approx. 200°C) Prevents wearing, stick-slip, seizing, run-in damage, pitting Carrier oil evaporates residue-free from 200°C upwa Bearings of pouring ladles, converters, kiln cars, or similar Relubrication in operation with OKS 310
OKS 235 OKS 2351*	Aluminium Paste, Anti-Seize Paste		For assembling screw and bolt threaded connections that are subjected to high temperatures and corrosive influences Optimum ratio of screw tightening torque to achievable pre-tension Prevents burning together or rusting on Lubricating and separating paste
OKS 240 OKS 241*	Antiseize Paste (Copper Paste)		For assembling screw threaded connections subjected to high temperatures and corrosive influences Prevents burning together or rusting on Optimum ratio of screw tightening torque to achievable pre-tension Classic anti-seize paste
OKS 245	Copper Paste with High Corrosion Protection		For screws, bolts and sliding surfaces subjected to high temperatures, water or sea water Prevents burning together and rusting on Prevents seizing during assembly Highly adhesive Excellent corrosion protection Suitable for brake systems

		Paste
Main Components	Technical Data	Packaging
black MoS ₂ , graphite other solid lubricants Mo _x -Active synthetic oil lithium soap	Operating temperature: -35°C → +450°C Press-fit: μ = 0.09, no chatter Four-ball test rig (welding load): 2,400 N Thread friction (M10/8.8): not applicable	50 g tube 250 g tin 1 kg tin 5 kg hobbock 25 kg hobbock
black-grey semi-synthetic oil	Operating temperature: $-40^{\circ}\text{C} \rightarrow +1,400^{\circ}\text{C}$ Press-fit: $\mu = 0.11$, chatter from 4,000 N on Four-ball test rig (welding load): 4,400 N Thread friction (M10/8.8): $\mu = 0.10$	250 g brush tin 1 kg tin 5 kg hobbock 25 kg hobbock
black MoS ₂ other solid lubricants Mo _x -Active synthetic oil	Operating temperature: -35°C → +450°C Press-fit: µ = 0.05, no chatter Four-ball test rig (welding load): 4,200 N Thread friction: not applicable	50 g tube 250 g tin 1 kg tin 5 kg hobbock 400 ml aerosol*
black MoS ₂ other solid lubricants polyglycol lithium soap	Operating temperature: $-35^{\circ}\text{C} \rightarrow +180^{\circ}\text{C}/+450^{\circ}\text{C}$ (lubrication/separation) Press-fit: $\mu = 0.11$ Four-ball test rig (welding load): 3,200 N Thread friction (M10/8.8): $\mu = 0.10$	250 g tin 1 kg tin 5 kg hobbock 25 kg hobbock
metallic silver aluminium powder other solid lubricants synthetic oil inorganic thickener	Operating temperature: $-40^{\circ}\text{C} \rightarrow +1,100^{\circ}\text{C}$ Press-fit: not applicable Four-ball test rig (welding load): not applicable Thread friction (M10/8.8): $\mu = 0.12$	250 g brush tin 1 kg tin 5 kg hobbock 400 ml aerosol*
copper brown copper powder other solid lubricants synthetic oil inorganic thickener	Operating temperature: $-30^{\circ}\text{C} \rightarrow +200^{\circ}\text{C}/+1,100^{\circ}\text{C}$ Press-fit: $\mu = 0.12$, no chatter Four-ball test rig (welding load): 2,800 N Thread friction (M10/8.8): $\mu = 0.09$	10 g tube 100 g tube 250 g brush tin 1 kg tin 5 kg hobbock 25 kg hobbock 400 ml aerosol*
copper-coloured copper powder corrosion protection additive semi-synthetic oil lithium soap	Operating temperature: $-30^{\circ}\text{C} \rightarrow +150^{\circ}\text{C}/+1,100^{\circ}\text{C}$ Press-fit: $\mu = 0.12$, no chatter Four-ball test rig (welding load): 2,600 N Thread friction (M10/8.8): $\mu = 0.15$	250 g brush tin 1 kg tin 5 kg hobbock 25 kg hobbock
	black MoS ₂ , graphite other solid lubricants Mo _x -Active synthetic oil lithium soap black-grey semi-synthetic oil black MoS ₂ other solid lubricants Mo _x -Active synthetic oil black MoS ₂ other solid lubricants polyglycol lithium soap metallic silver aluminium powder other solid lubricants synthetic oil inorganic thickener copper powder other solid lubricants synthetic oil inorganic thickener	black MoS_2 , graphite other solid lubricants Mo_2 -Active synthetic oil lithium soap

PASTES FOR EASY ASSEMBLY AND DISMANTLING

Pastes			
Product	Designation	Fields of Application	Purpose
OKS 250 OKS 2501* Mo _x - Active	White Allround Paste, metal-free		For screws, bolts and sliding surfaces subjected to high pressures and temperatures Optimum ratio of tightening torque to achievable pre-tension Metal-free Excellent corrosion protection Universal high-temperature paste For stainless-steel connections
OKS 252	White High- Temperature Paste for Food Processing Technology		Lubrication of screws, bolts and sliding surfaces that are subjected to high pressures, high temperatures at low speeds or oscillating movements Prevents burning together and rusting on Metal-free Highly adhesive Universal high-temperature assembly paste
OKS 260	White Assembly Paste		For screws, bolts and sliding surfaces subjected to high pressures at low speeds Optimum ratio of tightening torque to achievable pre-tension Prevents frictional corrosion Metal-free Waterproof
OKS 265	Chuck Jaw Paste		For sliding surfaces subjected to high pressures, vibrations and impact loads Optimum coefficient of sliding friction for high elasticity Resistant to water and cooling lubricants Prevents frictional corrosion Especially for chucks on machine tools
OKS 270	White Grease Paste		Long-term lubrication of sliding surfaces subjected to high pressures Non-soiling alternative to black lubricants Multipurpose grease paste for sliding points, e.g. on textile, packaging or office machines and household appliances
OKS 273	Grease Paste for Plastic Gears		Lubrication of plastic gears at low and high temperatures as well as low to medium speeds Long-term lubrication of heavily loaded small gears Good corrosion protection Good compatibility to plastics Plastic gears in roller-shutter and awning drives

			Pastes
Properties / Approvals	Main Components	Technical Data	Packaging
NSF.	yellowish white solid lubricants Mo _x -Active synthetic oil polycarbamide	Operating temperature: $-40^{\circ}\text{C} \rightarrow +200^{\circ}\text{C}/+1,400^{\circ}\text{C}$ (lubrication/separation) Press-fit: $\mu = 0.10$, no chatter Four-ball test rig (welding load): 3,600 N Thread friction (M10/8.8): $\mu = 0.12$	10 g tube 100 g tube 250 g brush tin 1 kg tin 5 kg hobbock 25 kg hobbock 400 ml aerosol*
Amerika (1.4)	light grey	Operating temperature: -30°C → +160°C/+1,200°C	200 g dispenser
NSF. + C	white solid lubricants polyglycol silicate	(lubrication/separation) Press-fit: μ = 0.12, no chatter Thread friction (M10/8.8): μ = 0.15	250 g brush tin 1 kg tin 5 kg hobbock
NSF H1 Reg. No. 135748			
	light-coloured white solid lubricants mineral oil lithium soap	Operating temperature: $-25^{\circ}\text{C} \rightarrow +150^{\circ}\text{C}$ Press-fit: $\mu = 0.09$, no chatter Four-ball test rig (welding load): 2,600 N Thread friction (M10/8.8): $\mu = 0.08$	100 g tube 250 g tin 1 kg tin 5 kg hobbock 25 kg hobbock
	light-coloured white solid lubricants polyalphaolefin (PAO) lithium soap	Operating temperature: -45°C \rightarrow +110°C Press-fit: not applicable Four-ball test rig (welding load): 4,200 N Thread friction (M10/8.8): μ = 0.10	400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock
	light-coloured PTFE white solid lubricants mineral oil lithium soap	Operating temperature: -25°C \rightarrow +125°C Press-fit: μ = 0.14, no chatter Four-ball test rig (welding load): 5,000 N Thread friction (M10/8.8): μ = 0.09	100 g tube 250 g tin 1 kg tin 5 kg hobbock 25 kg hobbock
pro plastic	light-coloured white solid lubricants polyalphaolefin (PAO) lithium soap	Operating temperature: -40°C → +140°C Press-fit: not applicable Four-ball test rig (welding load): not applicable Thread friction: not applicable	1 kg tin 25 kg hobbock

PASTES FOR EASY ASSEMBLY AND DISMANTLING

Pastes			
Product	Designation	Fields of Application	Purpose
OKS 277 OKS 2771*	High-Pressure Lubrication Paste with PTFE		Lubrication of heavily loaded press and guide plates Lubrication and sealing of fittings made of metal, plastic and ceramic Long regreasing intervals Good plastic and elastomer compatibility Highly adhesive Lubrication paste, e.g. for telescope booms of mobile cranes
OKS 280	White High- Temperature Paste		Separating paste for thermoforming processes Lubricating paste for temperature-stressed sliding surfaces Good separating effect through optimal solid lubricant combinations Prevents carburising of tools and workpieces Extends tool lives
OKS 1103	Heat Sink Paste		Protection of sensitive electronic components against overheating High thermal conductivity, 20 times better than at air Electrically insulating No drying out, hardening or bleeding Coupling of electronic components such as sensors, probes, diodes, transistors, etc. to cooling plates

			Pastes
Properties / Approvals	Main Components	Technical Data	Packaging
pro plastic	white PTFE ester	Operating temperature: -20°C → +150°C Four-ball test rig (welding load): 2,200 N	1 kg tin 5 kg hobbock 25 kg hobbock 400 ml aerosol*
	white white solid lubricants mineral oil lithium soap	Operating temperature: -15°C \rightarrow +1,150°C Press-fit: not applicable Four-ball test rig (welding load): 2,400 N Thread friction (M10/8.8): μ = 0.09	1 kg tin 5 kg hobbock 25 kg hobbock
	white metal oxides silicone oil inorganic thickener	Operating temperature: -40°C → +180°C Thermal conductivity: approx. 0.7 W/mK Dielectric strength (20°C): approx. 19 kV/mm Thermal capacity (21°C): approx. 1.03 J/cm³K	100 g tube 500 g tin 5 kg hobbock

Oils			
Product	Designation	Fields of Application	Purpose
OKS 300 Mo _x - Active	MoS ₂ Mineral Oil Concentrate		 Additive on MoS₂ and Mo_x basis Reduces friction, temperature and wear Smoothens the surfaces Creates emergency-running properties Passes common filters, does not react to magnetic filters Additive to gear, engine and machine oils
OKS 310	MoS ₂ High-Temperature Lubricating Oil		Lubrication of machine elements up to +450°C Residue-free evaporation of the base oil above +200°C Dry lubrication from +200°C to +450°C Lubrication in steelworks, foundries, rolling mills, ceramics industry
OKS 335	Metal Fluid		Lubrication of heavily loaded sliding surfaces at high temperatures Highly effective due to formation of press-resistant separating sliding layers Can be sprayed and brushed For rotary-oven bearings, at stop faces of axial guides, as well as as screw compound for hot screwed connections
OKS 340 OKS 341* Mo _x -Active	Chain Protector, strongly adhesive ISO VG 460 DIN 51 502: CLP X 460		Synthetic lubricant for machine elements subjected to high pressure or corrosive influences Extremely high creep capacity Highly adhesive and resistant to throwing off Excellent wear protection O-ring neutral For fast-running chains
OKS 350	High-Temperature Chain Oil with MoS ₂ , synthetic ISO VG 220		Synthetic oil for machine elements, at high temperatures and humidity Emergency lubrication when the operating temperature of the oil is exceeded or in case of insufficient lubrication Excellent wear protection through MoS ₂ , also under extreme stresses
OKS 352 OKS 3521* ChronoLube System	High-Temperature Oil, light-coloured, synthetic DIN 51502: CLP E 320		Synthetic high-temperature oil Good wear protective through EP additives Excellent oxidation protection, therefore resistant to ageing Low tendency to drip at high temperatures Minimal evaporation losses Residue-free evaporation Good water and steam resistance
OKS 353	High-Temperature Oil, light-coloured, synthetic DIN 51502: CLP E 100		Synthetic high-temperature oil Good wear protective through EP additives Excellent oxidation protection, therefore resistant to ageing Low tendency to drip at high temperatures Minimal evaporation losses Residue-free evaporation Good cleaning action

			Oils
Properties / Approvals	Main Components	Technical Data	Packaging
	black MoS ₂ Mo _x -Active mineral oil	Operating temperature: not applicable Density (20°C): 0.92 g/ml Viscosity (40°C): approx. 90 mm²/s Four-ball test rig (welding load): not applicable	200 ml tin 1 l tin 5 l canister 25 l canister 200 l drum
	black MoS ₂ polyglycol	Operating temperature: → +200°C/+450°C Density (20°C): 1.01 g/ml Viscosity (40°C): approx. 108 mm²/s Four-ball test rig (welding load): 2,800 N	1 I tin 5 I canister 25 I canister
	grey-copper copper, graphite, aluminium semi-synthetic oil	Operating temperature: -30°C → +200°C/+650°C Density (20°C): 0.98 g/ml Viscosity (40°C): approx. 2,100 mm²/s Four-ball test rig (welding load): 3,800 N	5 I canister 25 I canister 200 I drum
	brownish-transparent Mo _x -Active adhesion improver polyisobutylene	Operating temperature: -30°C → +180°C Density (20°C): 0.90 g/ml Viscosity (40°C): 470 mm²/s Four-ball test rig (welding load): 2,600 N	1 I tin 5 I canister 25 I canister 200 I drum 500 ml aerosol*
	black MoS ₂ Mo _x -Active ester	Operating temperature: -30°C → +250°C Density (20°C): 0.9 g/ml Viscosity (40°C): 240 mm²/s Four-ball test rig (welding load): 3,500 N	5 I canister 25 I canister 200 I drum
	yellowish ester	Operating temperature: -10°C → +250°C Density (20°C): 0.90 g/ml Viscosity (40°C): 270 mm²/s Four-ball test rig (welding load): 2,400 N	120 cm³ CL-cartridge 1 I tin 5 I canister 25 I canister 200 I drum 500 ml aerosol*
	yellow ester	Operating temperature: -25°C → +250°C Density (20°C): 0.96 g/ml Viscosity (40°C): 100 mm²/s Four-ball test rig (welding load): 2,000 N	1 I tin 5 I canister 25 I canister 200 I drum

Oils			
Product	Designation	Fields of Application	Purpose
OKS 354 OKS 3541* Mo _x -Active	High-Temperature Adhesive Lubricant, synthetic DIN 51502: CLP E 4.000		Lubrication of machine elements at high temperatures or strong influence of water Excellent oxidation protection, therefore resistant to ageing Excellent resistance against water, steam and aggressive media Extremely adhesive
OKS 360 OKS 361*	High-Performance Corrosion Protection Oil		Storage and lubrication under corrosive conditions Excellent corrosion protection due to VCI inhibitors Good creep properties Highly adhesive Protection of metallic surfaces at indoor and outdoor storage up to 2 years, under outdoor exposure under a roof or for sea transport
OKS 370 OKS 371*	Multipurpose Oil for Food Processing Technology ISO VG 15 DIN 51502: CL 15		High-performance oil for precision machine elements Tasteless and odourless Extremely high creep capacity Displaces water Dissolves dirt and rust Washed out of textiles For use in textile and packaging industry
OKS 387	High-Temperature Chain Lubricant for Food Processing Technology		Synthetic lubricant with graphite for strongly loaded lubrication points at extreme temperatures Reduces wear, excellent lubricating and emergency running properties Base oil that evaporates odourlessly and residue-free above +200°C, dry lubrication up to +600°C
OKS 390 OKS 391*	Cutting Oil for all Metals		For machining work on all metals Permits high cutting speeds Reduces application of force Results in optimum cutting surfaces and extended tool life For universal use in workshops and during assembly work
OKS 600 OKS 601*	Multi Oil ISO VG 7 DIN 51 502: C 7		Low-viscosity multipurpose oil Extremely high creep capacity Dismantling rusted-in parts Good lubricating properties Displaces moisture For cleaning and care of metal surfaces Protects electrical contacts For industry, workshop and hobby applications
OKS 640 OKS 641*	Maintenance Oil		For dismantling, lubrication and care of machine elements and metal surfaces Good cleaning action Temporarily protection against corrosion Displaces moisture For industry, workshop and hobby applications

			Oils
Properties / Approvals	Main Components	Technical Data	Packaging
	yellowish Mo _x -Active ester	Operating temperature: -10°C → +250°C Density (20°C): 0.91 g/ml Viscosity (40°C): 4,000 mm²/s Four-ball test rig (welding load): 2,200 N	5 I canister 25 I canister 200 I drum 400 ml aerosol*
	light-coloured VCI corrosion protection mineral oil	Operating temperature: -40°C → +80°C Density (20°C): 0.88 g/ml Viscosity (40°C): 15 mm²/s Four-ball test rig (welding load): not applicable	5 I canister 25 I canister 400 ml aerosol*
OKS 370: NSF H1 Reg. No. 124382 OKS 371: NSF H1 Reg. No. 124384	colourless white oil	Operating temperature: -10°C → +180°C Density (20°C): 0.87 g/ml Viscosity (40°C): 14 mm²/s	5 I canister 25 I canister 200 I drum 500 ml aerosol*
NSF H1 Reg. No. 126583	black graphite polyglycol	Operating temperature: max. +600°C Density (20°C): 1.04 g/ml Viscosity (40°C): 190 mm²/s Four-ball test rig (welding load): 2,800 N	5 I canister 25 I canister
American Laboratoria de la constanta de la con	yellowish mineral oil	Operating temperature: not applicable Density (20°C): 0.87 g/ml Viscosity (40°C): 20 mm²/s	250 ml bottle 5 l canister 25 l canister 200 l drum 400 ml aerosol*
	light-coloured mineral oil	Operating temperature: -30°C → +60°C Base oil viscosity (40°C): 7.3 mm²/s Condensed water test: 194 h (at 9 µm layer thickness)	5 I canister 25 I canister 200 I drum 400 ml aerosol*
	yellowish mineral oil solvent	Operating temperature: -50°C → +80°C Base oil viscosity (40°C): 3.5 mm²/s Salt spray test (sprayed on): > 110 h	5 I canister 25 I canister 200 I drum 500 ml aerosol*

Oils			
Product	Designation	Fields of Application	Purpose
OKS 650	Protective Oil for woodworking machines		Cleaning and protection of metal surfaces in the timber industry Lubricating of chains, joints, levers, springs, hinges and similar components, also at low temperatures Highly effective due to good penetrating property and high cleaning effect
OKS 670 OKS 671* Mo _x - Active	High-Performance Lube Oil with white Solid Lubricants ISO VG 46 DIN 51 502: CL F 46		Long-term lubrication of machine elements subjected to high pressures, dust or moisture Good corrosion protection Ideal for chains in dusty environments, e.g. on transport systems, packaging machines and automatic filling machines Bicycle chain oil
OKS 700 OKS 701*	Synthetic Oil ISO VG 7 DIN 51 502: CL X 15		For lubrication and care of high-precision machine elements Resin and acid-free Good creep behaviour Excellent wetting behaviour Compatible with plastics For use on measuring instruments in precision mechanics or optics
OKS 1000	Silicone Oil		Lubricant and parting agents for plastics and elastomers Also as damping oil Neutral with respect to plastics, elastomers or paints Broad temperature application range Excellent surface wetting Resin and acid-free Available in viscosities of 50 to 5000 cSt
OKS 3570 New	High-Temperature Chain Oil for Food Processing Technology ISO VG 320 DIN 51 502: CLP E 320		Lubrication of chains, hinges, joints, clamping and drying frames, and slideways at higher temperatures For conveying systems in painting, stoving and drying systems of the packaging and food processing industry
OKS 3710 New	Low-Temperature Oil for Food Processing Technology ISO VG 10 DIN 51 502: CL HC 10		Fully synthetic oil for permanently low temperatures Physiologically harmless For use in cold storage houses, shock freezers, etc. Excellent low-temperature behaviour Optimal additives against oxidation and ageing Long economic operating times
OKS 3720	Gear Oil for Food Processing Technology		Fully synthetic Also for the lubrication of rolling, friction bearings, chains and other lubricating points Long operating times due to high temperature and oxidation stability Good wear protection Resistant to steam, alkali and acid disinfectants

and cleaning agents

DIN 51 502: CLP HC 220

			Oils
Properties / Approvals	Main Components	Technical Data	Packaging
	greenish synthetic oil	Operating temperature: -50°C → +180°C Density (20°C): 0.85 g/ml Viscosity (40°C): 23 mm²/s	5 I canister 25 I canister 200 I drum
	light-coloured white solid lubricants Mo _x -Active mineral oil	Operating temperature: -30°C → +80°C Density (20°C): 0.90 g/ml Viscosity (40°C): 42 mm²/s Four-ball test rig (welding load): 3,000 N	5 I canister 25 I canister 200 I drum 400 ml aerosol*
	light brown polyisobutylene	Operating temperature: -50°C → +100°C Density (20°C): 0.84 g/ml Viscosity (40°C): 17.5 mm²/s Four-ball test rig (welding load): not applicable	1 I tin 5 I canister 25 I canister 100 ml aerosol* 400 ml aerosol*
pro plastic	light-coloured silicone oil	Operating temperature: -55°C → +200°C Density (20°C): 0.96 – 0.97 g/ml Viscosity (25°C): 50 – 5000 mm²/s Four-ball test rig (welding load): not applicable	1 I tin 5 I canister 25 I canister 200 I drum
NSF H1 Reg. No. 145347	yellowish-red ester	Operating temperature: -10°C → +250°C Density (20°C): 0.87 g/ml Viscosity (40°C): 300 mm²/s	5 I canister 25 I canister 200 I drum
NSF.	colourless polyalphaolefin (PAO)	Operating temperature: -60°C → +135°C Density (20°C): 0.80 g/ml Viscosity (40°C): 9 mm²/s	5 I canister 25 I canister 200 I drum
NSF H1 Reg. No. 142477			
NSF.	colourless-yellowish synthetic oil mixture	Operating temperature: -30°C → +120°C Density (20°C): 0.85 g/ml Viscosity (40°C): 220 mm²/s FZG damage level: power level >12	120 cm³ CL-cartridge 5 I canister 25 I canister 200 I drum
NSF H1 Reg. No. 135752			

Oils			
	Designation	Fields of Application	Durance
OKS 3725	Gear Oil for Food Processing Technology ISO VG 320 DIN 51 502: CLP HC 320	Fields of Application	Fully synthetic Also for the lubrication of rolling, friction bearings, chains and other lubricating points Long operating times due to high temperature and oxidation stability Good wear protection Resistant to steam, alkali and acid disinfectants and cleaning agents
OKS 3730	Gear Oil for Food Processing Technology ISO VG 460 DIN 51 502: CLP HC 460		Fully synthetic Also for the lubrication of rolling, friction bearings, chains and other lubricating points Long operating times due to high temperature and oxidation stability Good wear protection Resistant to steam, alkali and acid disinfectants and cleaning agents
OKS 3740	Gear Oil for Food Processing Technology ISO VG 680 DIN 51 502: CLP HC 680		Fully synthetic Also for the lubrication of rolling, friction bearings, chains and other lubricating points Long operating times due to high temperature and oxidation stability Good wear protection Resistant to steam, alkali and acid disinfectants and cleaning agents
OKS 3750 OKS 3751*	Adhesive Lubricant with PTFE ISO VG 100 DIN 51 502: CLF HC 100		Lubricating oil with PTFE Long operating times due to high temperature and oxidation stability Excellent wear protection High pressure absorption capacity Adheres well Resistant to steam, alkali and acid disinfectants and cleaning agents Tasteless and odourless
ChronoLube System	Multipurpose Oil for Food Processing Technology ISO VG 100 DIN 51 502: CL HC 100		Fully synthetic multipurpose oil Long operating times due to high temperature and oxidation stability Good wear protection Resistant to steam, alkali and acid disinfectants and cleaning agents Tasteless and odourless
OKS 3770	Hydraulic Oil for Food Processing Technology ISO VG 46 DIN 51 502: HLP HC 46 DIN 51 502: VDL HC 46		Fully synthetic oil for hydraulic systems, as well as other machine elements For screws and multiple vane rotary vacuum pumps Long operating times due to high temperature and oxidation stability Good wear protection Resistant to steam, alkali and acid disinfectants and cleaning agents

			Oils
Properties / Approvals	Main Components	Technical Data	Packaging
NSF F	colourless polyalphaolefin (PAO) synthetic oil mixture	Operating temperature: -30°C → +120°C Density (20°C): 0.85 g/ml Viscosity (40°C): 320 mm²/s FZG damage level: power level >12	5 I canister 25 I canister 200 I drum
NSF H1 Reg. No. 143596			
NSF.	colourless-light yellow synthetic oil mixture	Operating temperature: -30°C → +120°C Density (20°C): 0.86 g/ml Viscosity (40°C): 460 mm²/s FZG damage level: power level >12	5 I canister 25 I canister 200 I drum
NSF H1 Reg. No. 135753			
NSF.	colourless synthetic oil mixture	Operating temperature: -25°C → +120°C Density (20°C): 0.86 g/ml Viscosity (40°C): 680 mm²/s FZG damage level: power level >12	5 I canister 25 I canister
NSF H1 Reg. No. 135754			
NSF.	whitish PTFE polyalphaolefin (PAO)	Operating temperature: -35°C → +135°C Density (20°C): 0.87 g/ml Viscosity (40°C): 110 mm²/s Four-ball test rig (welding load): 2,600 N	5 l canister 500 ml aerosol*
OKS 3750: NSF H1 Reg. No. 124383 OKS 3751: NSF H1 Reg. No. 124801			
NSF.	colourless polyalphaolefin (PAO)	Operating temperature: -35°C → +135°C Density (20°C): 0.84 g/ml Viscosity (40°C): 100 mm²/s	120 cm³ CL-cartridge 5 I canister 25 I canister 200 I drum
NSF H1 Reg. No. 129964			
NSF I	colourless polyalphaolefin (PAO)	Operating temperature: -40°C → +135°C Density (20°C): 0.84 g/ml Viscosity (40°C): 50 mm²/s	5 I canister 25 I canister 200 I drum
NSF H1 Reg. No. 129962			

Oils			
Product	Designation	Fields of Application	Purpose
OKS 3775 New	Hydraulic Oil for Food Processing Technology ISO VG 32 DIN 51 502: HLP HC 32 DIN 51 502: VDL HC 32		Fully synthetic mineral-oil-free hydraulic oil High temperature and oxidation stability Good wear protection Compressor oil for screw and multiple vane rotary vacuum pumps in the food processing and pharmaceutical industries Resistant to steam, alkali and acid disinfectants and cleaning agents
OKS 3780	Hydraulic Oil for Food Processing Technology ISO VG 68 DIN 51 502: HLP HC 68 DIN 51 502: VDL HC 68		Fully synthetic oil for hydraulic systems, as well as other machine elements Long operating times due to high temperature and oxidation stability For screws and multiple vane rotary vacuum pumps Resistant to steam, alkali and acid disinfectants and cleaning agents
OKS 3790	Sugar-Dissolving Oil, fully synthetic		Dissolving of sugar deposits Cleaning of machine parts Lubrication of precision mechanisms Forming lubricant for packaging Good cleaning and lubrication effect Good wear and corrosion protection Tasteless and colourless emulsion Specially for the sweets industry
OKS 8600 OKS 8601*	BIOlogic Multi Oil ISO VG 7 DIN 51 502: CL E 7		Low-viscosity multipurpose oil VOC-free, biodegradable Extremely high creep capacity Dismantling rusted-in parts Good lubricating properties Displaces moisture For cleaning and care of metal surfaces Protects electrical contacts For industry, workshop and hobby applications

				Oils
Properties / Approvals	Main Components	Technical Data	Packaging	
NSF H1 Reg. No. 143597	colourless polyalphaolefin (PAO)	Operating temperature: -45°C → +135°C Density (20°C): 0.83 g/ml Viscosity (40°C): 32 mm²/s	5 I canister 25 I canister 200 I drum	
NSF H1 Reg. No. 136036	colourless polyalphaolefin (PAO)	Operating temperature: -40°C → +135°C Density (20°C): 0.83 g/ml Viscosity (40°C): 66 mm²/s	5 I canister 25 I canister 200 I drum	
NSF. NSF H1 Reg. No. 128470	colouriess water polyglycol	Operating temperature: -5°C → +80°C Density (20°C): 1.06 g/ml Viscosity (40°C): 20 – 24 mm²/s	5 I canister 25 I canister	
	light-coloured ester	Operating temperature: -5°C → +160°C Density (20°C): 0.88 g/ml Viscosity (40°C): 8.5 mm²/s	5 I canister 25 I canister 200 I drum 400 ml aerosol*	

Greases			
Product	Designation	Fields of Application	Purpose
OKS 400	MoS ₂ Multipurpose High-Performance Grease		 For heavily loaded or impact-loaded rolling and friction bearings, spindles and joints Forms an MoS₂ sliding film for emergency running properties Reduces wear Resistant to ageing and oxidation High-pressure grease for universal use
OKS 402	Ball-Bearing High- Performance Grease DIN 51 502: K2K-30		For machine elements such as rolling and friction bearings, spindles and slideways under normal loads Reduces wear Good resistance to pressure and water Resistant to ageing and oxidation Multipurpose grease
OKS 403	Marine Grease DIN 51 502: KP1-2E-20		Lubrication of machine elements subjected to water or sea water Excellent corrosion protection Adheres well Has proven itself in wet operating environments and in coastal and marine areas Water pump grease
ChronoLube System	High-Performance and High-Temperature Grease DIN 51 502: KP2P-30		For lubricating high pressure loaded rolling and friction bearings in a wide temperature range Reduces wear Good pressure resistance Good water resistance Resistant to ageing and oxidation Good corrosion protection Modern grease with a wide range of applications
OKS 410 Mo _x - Active	MoS ₂ High-Pressure Long-Life Grease DIN 51 502: KPF2K-20		Long-term lubrication of lubrication points subjected to pressure or impacts also under outdoor exposure Good emergency running properties Excellent wear protection Good water resistance Highly adhesive For harsh conditions, e.g. in rolling mills, construction and agricultural machines, in mining and port operations
OKS 416	Low-Temperature and High-Speed Grease DIN 51 502: KPE2K-50		Supple consistency, also at low temperatures Good wear protection High dynamic load-bearing capacity Good corrosion protection Reliable lubrication of conveying equipment, cold storage houses, spindle bearings, machine tools Instrument grease
OKS 418	High-Temperature Grease DIN 51 502: KPF2N-20		Lubrication of friction and rolling bearings at higher temperatures Long-term lubrication of lubrication points subjected to high pressure Good wear protection Good resistance to oxidation and ageing Economic hot bearing grease without drop point

			Greases
Properties / Approvals	Main Components	Technical Data	Packaging
	black MoS ₂ mineral oil lithium soap	Operating temperature: -30°C → +120°C NLGI grade: 2 DN factor (dm x n): 350,000 mm/min Base oil viscosity (40°C): 100 mm²/s Four-ball test rig (welding load): 3,600 N	100 g tube 400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum Lubrication set
	beige mineral oil lithium soap	Operating temperature: -30°C → +120°C NLGI grade: 2 DN factor (dm x n): 500,000 mm/min Base oil viscosity (40°C): 110 mm²/s Four-ball test rig (welding load): 2,000 N	400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock
	brown EP additive mineral oil calcium soap	Operating temperature: -25°C → +80°C NLGI grade: 1-2 DN factor (dm x n): 350,000 mm/min Base oil viscosity (40°C): 100 mm²/s Four-ball test rig (welding load): 3,000 N	400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum
	light-coloured EP additive semi-synthetic oil lithium-complex soap	Operating temperature: -30°C → +150°C NLGI grade: 2 DN factor (dm x n): 350,000 mm/min Base oil viscosity (40°C): 100 mm²/s Four-ball test rig (welding load): 2,800 N	120 cm³ CL-cartridge 400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum
	grey MoS ₂ , Mo _x -Active mineral oil lithium soap	Operating temperature: -20°C → +130°C NLGI grade: 2 DN factor (dm x n): 500,000 mm/min Base oil viscosity (40°C): 185 mm²/s Four-ball test rig (welding load): 3,600 N	400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum
	yellow EP additive semi-synthetic oil lithium soap	Operating temperature: -50°C → +120°C NLGI grade: 2 DN factor (dm x n): 1,000,000 mm/min Base oil viscosity (40°C): 15 mm²/s Four-ball test rig (welding load): 2,400 N	400 ml cartridge 1 kg tin 5 kg hobbock
Biodegradability: CEC-L-33-A93 21 days > 70%			
	black MoS ₂ mineral oil silicate	Operating temperature: -25°C → +150°C NLGI grade: 2 DN factor (dm x n): 400,000 mm/min Base oil viscosity (40°C): 220 mm²/s	1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum

Greases			
Product	Designation	Fields of Application	Purpose
OKS 420	High-Temperature Multipurpose Grease		Rolling and friction bearings, slow-running gears and chains at high temperatures, impact and pressure loads or water influences Extremely impact and pressure-resistant Good wear protection
System Mo _x - Active	DIN 51 502: KP1-2P-10		Highly adhesive For universal use at increased requirements
OKS 422	Universal Grease for Long-Life Lubrication		For rolling and friction bearings and spindles at extreme temperatures or high speeds Extremely impact and pressure-resistant Excellent wear protection Long regreasing intervals Use outside normal performance areas Spindle bearing lubrication at machine tools
ChronoLube	DIN 51 502: KPHC2R-40		
OKS 424	Synthetic High- Temperature Grease DIN 51 502: KHC1-2S-30		For rolling and friction bearings at high temperatures and high loads Good temperature resistance Good plastic and elastomer compatibility Good resistance against aggressive environmental influences Lubrication of exhaust-gas fans
OKS 425	Synthetic Long-Life Grease DIN 51 502: KPHC2K-50L		Long-term or for-life lubrication of machine elements that are subjected to high pressures and high temperatures Excellent wear protection For high speeds Good temperature resistance Spindle-bearing lubrication
OKS 427	Gear and Bearing Grease DIN 51 502: GP0/00P-10		For relatively slow-running gears, alternatively to oil lubrication Lubrication of drive and transport chains, rolling and friction bearings For high pressures, also at impact loads Minimising of the losses for leaks in comparison to oil lubrication Excellent wear protection
OKS 428	Fluid Grease for Gears, synthetic DIN 51 502: GPPG00K-40		For heavily loaded gearing exposed to weather outdoors and/or low temperatures, as well as angled or vertical shafts, also with gear designs which are not oil-tight For friction bearings with low clearance or high speeds For high pressures and impact loads
OKS 432	High Melting-Point Grease		For rolling and friction bearings and similar components, at high loads and temperatures Excellent wear protection Good resistance to oxidation and ageing Good pressure resistance

DIN 51 502: KP2R-20

• Maintenance of lubricating effect even at high

temperatures

			Greases
Properties / Approvals	Main Components	Technical Data	Packaging
	beige Mo _x -Active mineral oil polycarbamide	Operating temperature: -10°C → +160°C NLGI grade: 1-2 also available as fluid grease (NLGI 00) DN factor (dm x n): 300,000 mm/min Base oil viscosity (40°C): 490 mm²/s	120 cm³ CL-cartridge 400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum
	light-coloured EP additive polyalphaolefin (PAO) barium-complex soap	Operating temperature: -40°C → +180°C NLGI grade: 2 DN factor (dm x n): 800,000 mm/min Base oil viscosity (40°C): 50 mm²/s Four-ball test rig (welding load): 4,000 N	120 cm³ CL-cartridge 400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum
	cream-coloured polyalphaolefin (PAO) polycarbamide	Operating temperature: -30°C → +200°C NLGI grade: 1-2 DN factor (dm x n): 350,000 mm/min Base oil viscosity (40°C): 400 mm²/s Four-ball test rig (welding load): 1,800 N	400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum
	beige EP additive polyalphaolefin (PAO) special calcium soap	Operating temperature: -50°C → +130°C NLGI grade: 2 DN factor (dm x n): 1,000,000 mm/min Base oil viscosity (40°C): 30 mm²/s Four-ball test rig (welding load): 3,400 N	400 ml cartridge 1 kg tin 5 kg hobbock
	brownish semi-synthetic oil polycarbamide	Operating temperature: -15°C → +160°C NLGI grade: 0 – 00 DN factor (dm x n): not applicable Base oil viscosity (40°C): 490 mm²/s Four-ball test rig (welding load): not applicable	1 kg tin 5 kg hobbock 25 kg hobbock
	brown EP additive polyglycol lithium soap	Operating temperature: -30°C → +120°C NLGI grade: 00 DN factor (dm x n): 600,000 mm/min Base oil viscosity (40°C): 120 mm²/s Four-ball test rig (welding load): 3,000 N	1 kg tin 5 kg hobbock 25 kg hobbock
	brown EP additive mineral oil aluminium-complex soap	Operating temperature: -25°C → +190°C NLGI grade: 2 DN factor (dm x n): 200,000 mm/min Base oil viscosity (40°C): 230 mm²/s Four-ball test rig (welding load): 2,800 N	400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum

Product	Designation		I .
	Designation	Fields of Application	Purpose
ChronoLube	Long-Acting High-Pressure Grease DIN 51 502: KP2K-20		 For friction and rolling bearings at high pressure EP additives Good wear protection Good resistance to oxidation and ageing For heavily loaded rolling and taper roller bearings, e.g. on rolling stands, hot and cold shearing systems, sliding blocks and spindles
System	DIN 51 502: KP2K-20		
OKS 450 OKS 451*	Chain Lubricant, transparent		For fast-running chains and other machine elements subjected to high pressures or corrosive influences Extremely high creep capacity Highly adhesive Resistant to throwing off Excellent wear protection
Mo _x - Active	ISO VG 320 DIN 51 502: CLP X 320		Waterproof For lubricating flexible drives
OKS 464	Electrically Conductive Rolling Bearing Grease		Special grease for long-term lubrication of rolling and friction bearings for avoiding electrostatic charging Good resistance to oxidation and ageing in rolling bearings For bearings in motors, sheet drawing systems,
	DIN 51 502: KHC2N-40		sheet printing machines, etc.
OKS 467	High-Performance Grease for Plastic Lubrication with PTFE		Lubricating and sealing grease for plastic/plastic and plastic/metal combinations Good elastomer and plastic compatibility, EPDM-compatible Silicone-free Highly adhesive
OKS 468	Plastic and Elastomer Grease	8	Lubricating and sealing grease for plastic/plastic and plastic/metal combinations Good elastomer and plastic compatibility, EPDM-compatible Silicone-free Highly adhesive Does not affect the quality properties of beer foam Tasteless and odourless
OKS 469	Plastic and Elastomer Grease		Lubricating and sealing grease for plastic/plastic and plastic/metal combinations Good elastomer and plastic compatibility Silicone-free Highly adhesive Does not affect the quality properties of beer foam Tasteless and odourless
OKS 470 OKS 471*	White Universal High-Performance Grease (also for Food Processing Technology)		For heavily loaded rolling and friction bearings, spindles and slideways when dark-coloured lubricants cannot be used Good pressure properties Reduces wear Resistant to ageing and oxidation Waterproof

			Grease
Properties / Approvals	Main Components	Technical Data	Packaging
	red-brown EP additive mineral oil lithium soap	Operating temperature: -20°C → +120°C NLGI grade: 2 DN factor (dm x n): 400,000 mm/min Base oil viscosity (40°C): 185 mm²/s Four-ball test rig (welding load): 2,600 N	120 cm³ CL-cartridge 400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock
	brownish-transparent Mo _x -Active adhesion improver polyisobutylene	Operating temperature: -30°C → +200°C NLGI grade: not applicable DN factor (dm x n): not applicable Base oil viscosity (40°C): 300 mm²/s Four-ball test rig (welding load): 2,400 N	1 I tin 5 I canister 25 I canister 200 I drum 300 ml aerosol* 500 ml aerosol*
pro plastic	black carbon polyalphaolefin (PAO) lithium soap	Operating temperature: $-40^{\circ}\text{C} \rightarrow +150^{\circ}\text{C}$ NLGI grade: 2 DN factor (dm x n): 1,000,000 mm/min Base oil viscosity (40°C): 150 mm²/s Four-ball test rig (welding load): not applicable Specific resistivity: max. $10,000~\Omega^*\text{cm}$	400 ml cartridge 1 kg tin 5 kg hobbock
pro Plastic	light-coloured PTFE synthetic oil inorganic thickener	Operating temperature: -25°C → +150°C NLGI grade: not applicable DN factor (dm x n): not applicable Base oil viscosity (40°C): 1,500 mm²/s Four-ball test rig (welding load): not applicable	5 kg hobbock
NSF. pro plastic	light-coloured polyalphaolefin (PAO) inorganic thickener	Operating temperature: -25°C → +150°C NLGI grade: not applicable DN factor (dm x n): not applicable Base oil viscosity (40°C): 1,500 mm²/s Four-ball test rig (welding load): not applicable	1 kg tin 5 kg hobbock
NSF H1 Reg. No. 135591 Tested for beer foam compatibility			
NSF. pro plastic	colourless-transparent polyalphaolefin (PAO) inorganic thickener	Operating temperature: $-40^{\circ}\text{C} \rightarrow +150^{\circ}\text{C}$ NLGI grade: 2 DN factor (dm x n): not applicable Base oil viscosity (40°C): 400 mm²/s Four-ball test rig (welding load): not applicable	1 kg tin 5 kg hobbock
NSF H1 Reg. No. 131380 Tested for beer foam compatibility			
NSF.	light-beige white solid lubricants mineral oil lithium soap	Operating temperature: -30°C → +120°C NLGI grade: 2 DN factor (dm x n): 300,000 mm/min Base oil viscosity (40°C): approx. 110 mm²/s Four-ball test rig (welding load): 3,600 N	100 g tube 400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum 500 ml aerosol*

Product	Designation	Fields of Application	Purpose
OKS 472	Low-Temperature Grease for Food Processing Technology DIN 51 502: KHC1K-40		Lubrication of rolling and friction bearings with minimal bearing play and high speeds, at low temperatures as well as low coasting torques Functionality of the lubricating film up to -70°C Reduces wear Good resistance to ageing and oxidation For bearings in cold storage houses, ice factories, etc.
OKS 473	Fluid Grease for Food Processing Technology		For closed gears, rolling and friction beatings, joints or chains if grease lubrication is provided for Also suitable for higher speed, minimal bearing play or slight gear clearance Reduces wear Can be conveyed well using central lubricating systems Waterproof
	DIN 51 502: KPHC00K-40		
OKS 474	Fluid Grease DIN 51 502: KE0P-40		For heavily loaded machine elements Reduces wear Good corrosion protection Adheres well Good resistance to ageing and oxidation Biodegradable Fluid grease that can be conveyed well For bearings in filling and packaging machines
OKS 475	High-Performance Grease (also for Food Processing Technology)		For bearings with minimal bearing play and high speeds, at low and high temperatures and for bearings with low coasting torque Good wear protection through PTFE For fast-running bearings in the textile industry, in filling and packaging machines Lubrication of components made of glass fibre
	DIN 51 502: KFHC2K-60		reinforced plastic
OKS 476	Multipurpose Grease for Food Processing Technology DIN 51 502: KP2K-30		For rolling and friction bearings and other machine elements Resistant to cold and hot water as well as disinfectants and cleaning agents Resistance to oxidation Reduces wear Multipurpose grease for universal use in food processing technology
OKS 477	Valve Grease for Food Processing Technology DIN 51 502: MHC3N-10		Sealing lubrication of adapted sliding surfaces Lubrication of plastics and elastomers Lubrication of slow-running bearings Highly adhesive. Seals well Resistant to water and steam Does not affect the quality properties of beer foam Valve and sealing grease
OKS 479	High-Temperature Grease for Food Processing Technology		Reduces wear Excellent pressure resistance Good resistance to oxidation and ageing Good plastic and elastomer compatibility Resistant to water and steam
hronoLube			For all sections of the food processing, beverage and pharmaceutical industries

			Greases
Properties / Approvals	Main Components	Technical Data	Packaging
NSF. pro plastic	white polyalphaolefin (PAO), ester aluminium-complex soap	Operating temperature: -45°C → +120°C NLGI grade: 1 DN factor (dm x n): 800,000 mm/min Base oil viscosity (40°C): 30 mm²/s Four-ball test rig (welding load): not applicable	400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock
NSF H1 Reg. No. 135749			
NSF.	light yellow polyalphaolefin (PAO) aluminium-complex soap	Operating temperature: $-45^{\circ}\text{C} \rightarrow +120^{\circ}\text{C}$ NLGI grade: $0-00$ DN factor (dm x n): $500,000$ mm/min Base oil viscosity (40°C): 160 mm²/s	1 kg tin 5 kg hobbock 25 kg hobbock
NSF H1 Reg. No. 140485			
	beige ester polycarbamide	Operating temperature: -40°C → +160°C NLGI grade: 0 DN factor (dm x n): 500,000 mm/min Base oil viscosity (40°C): 110 mm²/s Four-ball test rig (welding load): not applicable	1 kg tin 5 kg hobbock 25 kg hobbock
NSF H2 Reg. No. 137708	beige PTFE polyalphaolefin (PAO) lithium soap	Operating temperature: -60°C → +120°C NLGI grade: 2 DN factor (dm x n): 1,000,000 mm/min Base oil viscosity (40°C): approx. 30 mm²/s Four-ball test rig (welding load): 2,000 N	400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock 170 kg drum
NSF H1 Reg. No. 137619	white semi-synthetic oil auminium-complex soap	Operating temperature: -30°C → +110°C NLGI grade: 2 DN factor (dm x n): 400,000 mm/min Base oil viscosity (40°C): 240 mm²/s Four-ball test rig (welding load): 2,200 N	400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum
NSF H1 Reg. No. 135750 Tested for beer foam compatibility	light brown polyalphaolefin (PAO) silicate	Operating temperature: -10°C → +140°C NLGI grade: 3 DN factor (dm x n): not applicable Base oil viscosity (40°C): 1,600 mm²/s Four-ball test rig (welding load): not applicable	100 g tube 1 kg tin 5 kg hobbock 25 kg hobbock
NSF H1 Reg. No. 135675	cream-coloured EP additive polyalphaolefin (PAO) aluminium-complex soap	Operating temperature: -40°C → +160°C NLGI grade: 1 DN factor (dm x n): 400,000 mm/min Base oil viscosity (40°C): 400 mm²/s	120 cm³ CL-cartridge 400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock

<i>Greases</i>		I	
Product	Designation	Fields of Application	Purpose
OKS 490	Toothed Gearing Grease, sprayable		For gears with highest pressures and high circumferential speeds Lubrication of guides, slide rails, transport chains and wire cables Excellent pressure resistance through EP additives and solid lubricants Protection of the tooth flanks, also at long relubrication intervals
DKS 491	Open Gear Spray, dry		Dry lubrication of slowly-turning, open pinion gears, steel cables etc. subjected to high pressures, dust or corrosive influences, such as outdoor weathering Reduces friction and wear Prevents adhesion of dust and dirt
OKS 495	Adhesive Lubricant DIN 51 502: OGPF1S-30		Priming of heavily loaded tooth flanks and sliding surfaces Run-in lubrication to avoid damage Excellent pressure resistance Lubrication of jackscrews in the motor vehicle and train technology Gear rack lubrication in conveying equipment
DKS 1110 DKS 1111*	Multi-Silicone Grease DIN 51 502: MSI3S-40	8	For fittings, seals and plastic parts Resistant to media Excellent compatibility to plastic No drying out or bleeding Tasteless and odourless Highly adhesive Silicone grease for a broad range of application including for food processing technology
OKS 1112	Silicone Grease for Vacuum Valves DIN 51 502: MSI3S-30		For slide valves and valves Excellent media resistance, e.g. to cold and hot water, acetone, ethanol, ethylene glycol, glycerin and methanol Adheres and seals well For use in vacuum plants and laboratory equipments.
DKS 1133	Low-Temperature Silicone Grease DIN 51 502: KSI2S-70		Lubrication of rolling and friction bearings, bowden cables, fittings, plastics and elastomer Excellent low-temperature behaviour Neutral with regard to plastics and elastomers Lubrication of motors, drives, control systems under arctic conditions
DKS 1140	Extreme-Temperature Silicone Grease DIN 51 502: KFSI2U-20		For slow-running machine elements at extreme high temperatures Minimal evaporation losses For bearings at kilns, hardening furnaces, baken machines, drying tunnels, foundry machines, boiler firing systems, plastics processing machines or welding and soldering machines etc.
DKS 1144	Universal Silicone Grease		For bearings at changing temperatures and medium speeds Good resistance to oxidation and ageing Neutral with regard to plastics and elastomers Lubrications of smaller bearings, e.g of turbosuperchargers, blowers, water pumps, washing machines and driers

DIN 51 502: KSI2S-40

			Greases
Properties / Approvals	Main Components	Technical Data	Packaging
	black graphite (ultra fine) EP additive mineral oil aluminium-complex soap	Operating temperature: -30°C → +220°C NLGI grade: 0 DN factor (dm x n): not applicable Base oil viscosity (40°C): 1,000 mm²/s Four-ball test rig (welding load): approx. 6,500 N FZG damage level: power level >12	1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum
	black graphite, bitumen mineral oil, natural resins solvent	Operating temperature: -30°C → +100°C	500 ml aerosol
	black graphite EP additive mineral oil, synthetic oil aluminium-complex soap	Operating temperature: -40°C → +200°C NLGI grade: 1 DN factor (dm x n): not applicable Base oil viscosity (40°C): 500 mm²/s Four-ball test rig (welding load): 4,200 N FZG damage level: power level >12	1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum
OKS 1110: NSF H1 Reg. No. 124381 DVGW DIN EN 377 Reg. No. NG-5162BL0482	transparent silicone oil inorganic thickener	Operating temperature: -40°C → +200°C NLGI grade: 3 DN factor (dm x n): not applicable Base oil viscosity (40°C): 9,500 mm²/s Four-ball test rig (welding load): not applicable	10 g tube 100 g tube 400 ml cartridge 500 g tin 5 kg hobbock 25 kg hobbock 180 kg drum 500 ml aerosol*
pro plastic	transparent silicone oil inorganic thickener	Operating temperature: -30°C → +200°C NLGI grade: 3 DN factor (dm x n): not applicable Base oil viscosity (40°C): 100,000 mm²/s Evaporation loss (24h/200°C): <3.0 percent in weight	500 g tin 5 kg hobbock 25 kg hobbock
pro plastic	beige silicone oil lithium soap	Operating temperature: -73°C → +200°C NLGI grade: 2 DN factor (dm x n): 200,000 mm/min Base oil viscosity (40°C): 100 mm²/s Four-ball test rig (welding load): 1,200 N	100 g tube 500 g tin 5 kg hobbock 25 kg hobbock
	black silicone oil carbon black	Operating temperature: -20°C → +290°C NLGI grade: 2 DN factor (dm x n): 75,000 mm/min Base oil viscosity (40°C): 100 mm²/s Four-ball test rig (welding load): 2,100 N	500 g tin 5 kg hobbock 25 kg hobbock
pro plastic	beige silicone oil lithium soap	Operating temperature: -40°C → +200°C NLGI grade: 2 DN factor (dm x n): 300,000 mm/min Base oil viscosity (40°C): 125 mm²/s Four-ball test rig (welding load): 1,100 N	120 cm ³ CL-cartridge 500 g tin 5 kg hobbock 25 kg hobbock

Greases			
Product	Designation	Fields of Application	Purpose
OKS 1148	Long-Term Silicone Grease, with PTFE DIN 51 502: KFSI2S-40		Long-term lubrication of rolling and friction bearings at changing temperatures Excellent resistance to oxidation and ageing Good media resistance Neutral with regard to plastics and elastomers Lubrication of bearings in motors
OKS 1155	Adherent Silicone Grease		For sliding points between rubber and metals or plastics at low speeds Excellent resistance to oxidation and ageing Neutral with regard to plastics and elastomers Highly adhesive. Seals well For O-rings in pneumatic systems of brake systems
	DIN 51 502: MSI2R-60		
OKS 4100	MoS ₂ Extreme Pressure Grease DIN 51 502: KPF2K-20		 For slow-running rolling and friction bearings at very high, also shock-type loads Good emergency running properties through MoS₂ sliding film Excellent wear protection Good water resistance, also during high quantities of water Highly adhesive For harsh operating conditions, e.g. in stone crushers
OKS 4200	Synthetic High- Temperature Bearing Grease with MoS ₂		Long-term lubrication of rolling and friction bearings subjected to high temperatures Extremely impact and pressure-resistant Excellent wear protection Functionally reliable across a wide temperature range For fans, blowers, autoclaves, drying ovens, systems in metallurgical works and steelworks
OKS 4220	Extreme-Temperature Bearing Grease DIN 51 502: KFFK2U-20		Long-term lubrication of rolling and friction bearings Excellent temperature resistance Excellent media resistance Excellent plastic and elastomer compatibility Excellent water, steam resistance Excellent wear protection
OK5 4230	Extreme Pressure Oxygen Fitting Grease DIN 51 502: MFFK2U-60		Lubricant for fittings with contact to oxygen at high pressures and temperatures Lubricant for chemical plants and apparatuses Excellent media resistance Excellent plastic and elastomer compatibility Excellent wear protection Oxygen fittings grease
OVE 4840			A Lubrication of significant in the status
OKS 4240	Special Grease for Ejector Pins DIN 51 502: MFFK2U-20		Lubrication of ejector pins in the plastics industry Long-term lubrication of rolling and friction bearings at extremely high temperatures and aggressive media Resistant to plastics or elastomers Excellent temperature resistance

			Greases
Properties / Approvals	Main Components	Technical Data	Packaging
pro plastic	light grey PTFE silicone oil lithium-complex soap	Operating temperature: -40°C → +200°C NLGI grade: 2 DN factor (dm x n): 350,000 mm/min Base oil viscosity (40°C): 60 mm²/s Four-ball test rig (welding load): 2,200 N	400 ml cartridge 500 g tin 5 kg hobbock 25 kg hobbock
pro plastic	beige silicone oil ester lithium soap	Operating temperature: -65°C → +175°C NLGI grade: 2 DN factor (dm x n): not applicable Base oil viscosity (40°C): 100 mm²/s Four-ball test rig (welding load): not applicable	500 g tin 5 kg hobbock 25 kg hobbock
	black MoS ₂ , graphite Mo _x -Active mineral oil lithium-calcium soap	Operating temperature: -20°C → +120°C NLGI grade: 2 DN factor (dm x n): 100,000 mm/min Base oil viscosity (40°C): 1,020 mm²/s Four-ball test rig (welding load): >4,000 N	400 ml cartridge 5 kg hobbock 25 kg hobbock
	black MoS ₂ Mo _x -Active semi-synthetic oil bentonite	Operating temperature: -10°C → +180°C NLGI grade: 2 DN factor (dm x n): 400,000 mm/min Base oil viscosity (40°C): 220 mm²/s Four-ball test rig (welding load): 2,600 N	400 ml cartridge 1 kg tin 5 kg hobbock 25 kg hobbock 180 kg drum
NSF H1 Reg. No. 124380	white PTFE perfluoropolyether (PFPE)	Operating temperature: -20°C → +280°C NLGI grade: 2 DN factor (dm x n): 300,000 mm/min Base oil viscosity (40°C): 510 mm²/s Four-ball test rig (welding load): >10,000 N	100 g tube 800 g cartridge 500 g tin 1 kg tin 5 kg hobbock
NSF H1 Reg. No. 135755 DIN EN 1797:2002-02; Test report BAM, Diary No. 6123/97 II-5259 I	white PTFE perfluoropolyether (PFPE)	Operating temperature: -60°C → +260°C NLGI grade: 2 DN factor (dm x n): not applicable Base oil viscosity (40°C): 300 mm²/s Four-ball test rig (welding load): 4,000 N	250 g dispenser 1 kg tin
	white PTFE perfluoropolyether (PFPE) inorganic thickener	Operating temperature: -20°C → +300°C NLGI grade: 2 DN factor (dm x n): 350,000 mm/min Base oil viscosity (40°C): 440 mm²/s Four-ball test rig (welding load): 4,800 N	1 kg tin

DRY LUBRICANTS – THE ALTERNATIVE FOR SPECIAL APPLICATION CASES

Dry Lub	ricants		
Product	Designation	Fields of Application	Purpose
OKS 100	MoS₂ Powder, high degree of purity		To improve the sliding properties of machine elements Run-in lubricant in combination with oil or grease lubrication Prevents friction and wear Difficult moulding processes in metal working For integration in plastics, seals and packings
OKS 110 OKS 111*	MoS ₂ Powder, microsize		Run-in lubricant in combination with oils or greases Prevents friction and wear, even at high pressures Good adhesion, even at extremely precision-machined surfaces For difficult moulding processes For pressing in bearings
OKS 500	MoS ₂ Bonded Coating, thermosetting		Dry lubrication for temporary operation and long downtimes, in dusty environments and at low speeds Run-in lubricant in combination with oil or grease lubrication Creates emergency-running properties Use in a broad temperature range
OKS 510 OKS 511*	MoS ₂ Bonded Coating, fast-drying		Dry lubrication for temporary operation or long downtimes, industry environments and at low sliding speeds Run-in lubricant in combination with oils or greases Creates emergency-running properties Dries at room temperature
OKS 530	MoS ₂ Bonded Coating, water-based, air-drying		Lubrication of heavily loaded chains when oil and grease lubrication is no longer possible Can be sprayed onto hot surfaces Use in a broad temperature range Dries at room temperature Spent sliding film can be topped up Can be diluted with water in ratio of up to 1:5
OKS 536	Graphite Bonded Coating, water-based, air-drying		Lubrication of heavily loaded chains when oil and grease lubrication is no longer possible Can be sprayed onto hot surfaces Use in a broad temperature range Dries at room temperature Spent sliding film can be topped up Can be diluted with water in ratio of up to 1:5
OKS 570 OKS 571*	PTFE Bonded Coating		Dry lubrication of sliding surfaces of different materials at low pressures, low speeds and in dusty environments Colourless, no-soiling sliding and parting film Prevents tribocorrosion Dries at room temperature

			Dry Lubricants
Properties / Approvals	Main Components	Technical Data	Packaging
	grey-black MoS ₂	Operating temperature: -185°C → +450°C (up to +1,100°C in vacuum, up to +1,300°C in inert gas) Thread friction: not applicable Particle size: 4.0 – 15.0 µm, max. 48.0 µm	1 kg tin 5 kg hobbock 25 kg hobbock
	grey-black MoS ₂ wax (*only aerosol)	Operating temperature: -185°C → +450°C (up to +1,100°C in vacuum, up to +1,300°C in inert gas) Particle size: 2.5 – 5.0 µm, max. 15 µm	1 kg tin 5 kg hobbock 25 kg hobbock 400 ml aerosol*
	black MoS ₂ , graphite epoxy resin solvent	Operating temperature: -70°C \rightarrow +250°C Press-fit test: μ = 0.09, no chatter Thread friction: not applicable	500 g tin 5 kg hobbock
	grey-black MoS ₂ , graphite silicone resin solvent	Operating temperature: -180°C \rightarrow +450°C Press-fit test: μ = 0.07, no stick-slip	500 g tin 5 kg hobbock 25 kg hobbock 400 ml aerosol*
	black MoS ₂ , graphite organic binder water	Operating temperature: $-35^{\circ}C \rightarrow +450^{\circ}C$ Press-fit test: $\mu = 0.10$, no chatter Thread friction (M10/8.8): $\mu = 0.05$	500 g tin 5 kg canister 25 kg canister
NSF H2 Reg. No. 130416	black graphite organic binder water	Operating temperature: $-35^{\circ}\text{C} \rightarrow +600^{\circ}\text{C}$ Press-fit test: μ = 0.12, no chatter Thread friction: not applicable	5 kg canister 25 kg canister
	whitish PTFE silicone resin solvent	Operating temperature: -180°C \rightarrow +260°C Press-fit test: μ = 0.07 Thread friction (M10/8.8): μ = 0.10	500 ml tin 5 l hobbock 25 l hobbock 400 ml aerosol*

DRY LUBRICANTS – THE ALTERNATIVE FOR SPECIAL APPLICATION CASES

Dry Lub			
Product	Designation	Fields of Application	Purpose
OKS 575	PTFE Water Bonded Coating		For sliding surfaces made of different materials at low pressures, low speeds and in dusty environments Avoids squeaking at differently hard materials Dries at room temperature Contains UV indicator Can be diluted with water
OKS 589	MoS₂ PTFE Bonded Coating, thermosetting		Dry lubrication of sliding surfaces under heavy loads, low speeds and corrosive influences Prevents friction and wear Protects against corrosion Use in a broad temperature range No adhesion of dust and dirt
OKS 1300 OKS 1301*	Sliding Film, colourless		Thread coating Sliding film for plastic, wood and metal Dry sliding film fast to handling with UV indicator Prevents seizing For all screw materials Broad range of uses, in particular for precoating small and mass-produced parts
OKS 1710 New	Sliding Film for Screws, water-based concentrate		Thread coating, also for galvanic surfaces and VA screws, for controlled assembly Dry sliding film fast to handling, verifiable with UV indicator Can be diluted with water in a ratio of up to 1:5 Controlled friction coefficients with narrow spread Economic precoating
OKS 1750	Sliding Film for Wood Screws, water-based concentrate		Coating of threads with galvanised surfaces Dry film fast to handling, verifiable with UV indicator Prevents cold welding Can be diluted with water in a ratio of up to 1:5 Controlled friction coefficients with narrow spread In particular for chipboard screws
OKS 1765	Sliding Film for Thread-Cutting Screws, water-based concentrate		Coating of thread-cutting screws made of aluminium alloys, high-alloy steels, galvanised and austenitic steels The film fast to handling, verifiable with UV indicator Coold welding Can be diluted with water in a ratio of up to 1:5 Controlled friction coefficients with narrow sprea

		D	ry Lubricants
Properties / Approvals	Main Components	Technical Data	Packaging
	whitish PTFE acrylic copolymer UV indicator water	Operating temperature: -180°C → +150°C/+250°C Press-fit test: not applicable Thread friction (M10/8.8): not applicable	5 kg hobbock 25 kg hobbock
	matt black MoS ₂ , graphite, PTFE epoxy resin solvent	Operating temperature: $-70^{\circ}\text{C} \rightarrow +250^{\circ}\text{C}$ Press-fit test: $\mu = 0.07$, no chatter Thread friction (M10/8.8): $\mu = 0.08$	5 kg hobbock
pro plastic	colourless UV indicator synthetic wax solvent	Operating temperature: $-60^{\circ}\text{C} \rightarrow +100^{\circ}\text{C}$ Press-fit test: not applicable Thread friction (M10/8.8): $\mu = 0.08$ - 0.10	5 I canister 25 I canister 200 I drum 400 ml aerosol*
	milky-white UV indicator, corrosion protection inhibitor synthetic wax water isopropanol	Operating temperature: > +60°C Press-fit test: not applicable Thread friction (M10/8.8): μ = 0.08 - 0.14 (depending on concentration and surface)	5 I canister 25 I canister 200 I drum
	yellowish UV indicator, corrosion protection inhibitor synthetic wax water isopropanol	Operating temperature: > $+70^{\circ}$ C Press-fit test: not applicable Thread friction (M10/8.8): $\mu = 0.08 - 0.14$ (depending on concentration and surface)	25 I canister
	milky-white UV indicator, corrosion protection inhibitor synthetic wax water isopropanol	Operating temperature: > $+70^{\circ}$ C Press-fit test: not applicable Thread friction (M10/8.8): $\mu = 0.06$ - 0.15 (depending on concentration and surface)	5 I canister 25 I canister 200 I drum

CORROSION PROTECTION FOR RELIABLE PRESERVATION DURING STORAGE AND SHIPPING

Product	Designation	Fields of Application	Purpose
OKS 2100 OKS 2101*	Protective Film for Metals		Temporary wax-based corrosion protection film for storage and shipping of machine parts with bare metal surfaces Suitable for all climatic zones Non-tacky, transparent film Easy to remove Good compatibility with lubricants
OKS 2300 OKS 2301*	Mould Protector		Temporary corrosion protection film for storage and shipping of machine parts with bare metal surfaces Green colouration for checking Suitable for all climatic zones Displaces water Easy to remove Good compatibility with lubricants
OKS 2511	Zinc Coating		Cathodic corrosion protection based on highly pure zinc powder for ferrous metals For touching up galvanised surfaces Also suitable as adhesive primer for coating systems Fast-drying For use in steel construction work in air conditioning technology
OKS 2521	Gloss Zinc		Decorative corrosion protection based on zinc and aluminium powder for ferrous metals For touching up hot-galvanised surfaces Can be welded through Abrasion resistant Can be painted over Fast-drying
OKS 2531	Alu-Metallic		Decorative corrosion protection based on aluminium powder for ferrous metals For touching up hot-galvanised surfaces Can be welded through Fast-drying Abrasion resistant Protects vehicle exhaust systems Optimal when combined with OKS 2511
OKS 2541	Stainless Steel Protection		Resistant protective and decorative coating with stainless steel pigments for all materials Highly adhesive Impact, abrasion and scratch resistant Fast-drying Optimal when combined with OKS 2511

		Corrosi	on Protection
Properties / Approvals	Main Components	Technical Data	Packaging
NSF.	light-coloured synthetic wax corrosion protection additives solvent	Operating temperature: -40°C → +70°C Salt spray test: 1,000 h with 50 µm layer thickness Layer thickness: approx. 10 µm for one-time application	5 I canister 25 I canister 200 I drum 500 ml aerosol*
OKS 2100: NSF H2 Reg. No. 142256			
	greenish synthetic wax corrosion protection additives solvent	Operating temperature: -40°C → +70°C Salt spray test: >1,000 h with 50 μm layer thickness Layer thickness: approx. 10 μm for one-time application	5 I canister 25 I canister 200 I drum 400 ml aerosol*
+	zinc grey purest zinc powder synthetic resin mixture solvent	Operating temperature: up to +400°C Salt spray test: 500 h with 70 µm layer thickness Layer thickness: approx. 20 µm for one-time spraying	500 ml aerosol
+	aluminium-coloured purest zinc and purest aluminium powder synthetic resin mixture solvent	Operating temperature: up to +240°C Salt spray test: 240 h with 80 – 100 µm layer thickness Layer thickness: approx. 20 µm for one-time spraying	500 ml aerosol
+	aluminium-coloured purest aluminium powder synthetic resin mixture solvent	Operating temperature: $-50^{\circ}\text{C} \rightarrow +180^{\circ}\text{C}$ (briefly up to $+800^{\circ}\text{C}$) Salt spray test: 480 h with 50 µm layer thickness Layer thickness: approx. 10 µm for one-time spraying	500 ml aerosol
	bright metallic stainless-steel powder acrylic resin solvent	Operating temperature: up to +100°C Layer thickness: approx. 20 µm for one-time spraying	500 ml aerosol

MAINTENANCE PRODUCTS FOR ONGOING SERVICE

Product	Designation	Fields of Application	Purpose
DKS 611	Rust Remover with MoS ₂	Pietus di Application	For destruction-free dismantling of seized or rusted-in machine elements Excellent creep properties Displaces moisture Good sliding properties through MoS ₂ Universal rust dissolver for industry, workshop and hobby applications
OKS 621	(F)Rost Breaker		Destruction-free dismantling of seized or rusted-in machine elements Breaks open corrosion layers by cooling down to -40°C Penetration of creep oil into microsize cracks Fast-acting rust dissolver for industry, workshop and hobby applications
OKS 1360 OKS 1361*	Silicone Release Agent		Parting agent and lubricant for use in processing plastics Chemically neutral Solvent-free Colourless Displaces water Fitting aid for rubber profiles Lubrication of cutting edges Care and impregnation of plastic surfaces and textiles (OKS 1361)
OKS 1510 OKS 1511*	Release Agent, silicone-free		Silicone-free parting agent for arc and inert-gas arc welding No burning on of weld spatters Increases torch service life Highly-effective mould release agent for processing plastics Universal solvent-based welding spray
OKS 1600 OKS 1601*	Spatter Release, water-based concentrate		Environmentally friendly, water-based parting agent for arc and inert-gas arc welding No burning on of weld spatters Increases torch service life Can be removed residue-free Universal, silicone-free, welding parting-agent concentrate
OKS 2711 New	Refrigerating Spray		Rapid undercooling of smaller surfaces and parts down to -45°C Simulation of cold-start conditions on motor vehicle engines For locating thermally-related interruptions Protects adjacent areas during soldering and welding Easier mounting with interference fits
OKS 2731 NeW	Compressed-Air Spray		Removal of loose dirt particles at inaccessible points Dry, oil-free pressurised gas mixture Evaporates quickly and residue-free For maintenance work in electronics and precision mechanics, on optical devices and all types of office machines

	Maintena	nce Products
Main Components	Application tips	Packaging
grey MoS₂ mineral oil	For optimum effectiveness, clean soiling from corresponding area mechanically. Spray on generously and allow to soak. Repeat as necessary. Operating temperature: -30°C → +50°C.	400 ml aerosol
light-coloured mineral oil solvent	Before applying, remove coarse soiling. Shake can before use. Spray on from distance of 10 − 15 cm and allow to soak in for approx. 1 − 2 min. Repeat as necessary. Operating temperature: -10°C → +40°C.	400 ml aerosol
colourless silicone oil	For optimum effect, clean surfaces mechanically and with OKS 2610/OKS 2611. Apply or spray on an even, thin layer of the product and avoid excessive lubrication. Operating temperature: -60°C → +200°C	1 I tin 5 I canister 25 I canister 500 ml aerosol*
light-coloured vegetable base oil solvent	For optimum effect, clean surfaces mechanically and with OKS 2611. Spray on an even, thin coating to application area from a distance of 20 – 30 cm. Easy to remove without leaving behind residues for subsequent work steps such as painting or metallising.	5 I canister 25 I canister 500 ml aerosol*
transparent natural greasy oil water	For optimum effect, clean surfaces mechanically and with OKS 2610/OKS 2611. Depending on application, dilute concentrate with water in 1:5 ratio and apply an even thin coating or spray on accordingly from a distance of 20 – 30 cm.	5 I canister 25 I canister 500 ml aerosol*
colourless active and propellant gases	Spraying of cooled parts until desired temperature is reached. Do not use with voltage connected and keep away from ignition sources. OKS 2711 evaporates quickly and residue-free.	400 ml aerosol
colourless active and propellant gases	Spray surface at shorter intervals from a distance of approx. 10 cm. Do not shake can before use and hold vertically when spraying. Do not use with voltage connected and keep away from ignition sources.	400 ml aerosol
	grey MoS₂ mineral oil light-coloured mineral oil colourless silicone oil light-coloured vegetable base oil solvent transparent natural greasy oil water colourless active and propellant gases	Main Components Application tips grey MoS₂ mineral oil For optimum effectiveness, clean soiling from corresponding area mechanically. Spray on generously and allow to soak. Repeat as necessary. Operating temperature: -30°C → +50°C. light-coloured mineral oil solvent Before applying, remove coarse soiling. Shake can before use. Spray on from distance of 10 – 15 cm and allow to soak in for approx. 1 – 2 min. Repeat as necessary. Operating temperature: -10°C → +40°C. colourless silicone oil For optimum effect, clean surfaces mechanically and with OKS 2610 /OKS 2611. Apply or spray on an even, thin layer of the product and avoid excessive lubrication. Operating temperature: -60°C → +200°C light-coloured vegetable base oil solvent For optimum effect, clean surfaces mechanically and with OKS 2611. Spray on an even, thin coating to application area from a distance of 20 – 30 cm. Easy to remove without leaving behind residues for subsequent work steps such as painting or metallising. transparent natural greasy oil water For optimum effect, clean surfaces mechanically and with OKS 2610/OKS 2611. Depending on application area from a distance of 20 – 30 cm. colourless active and propellant gases Spraying of cooled parts until desired temperature is reached. Do not use with voltage connected and keep away from ignition sources. OKS 2711 evaporates quickly and residue-free. colourless active and propellant gases Spray surface at shorter intervals from a distance of approx. 10 cm. Do not shake can before use and hold vertically when spraying. Do not use with voltage connected and keep away

MAINTENANCE PRODUCTS FOR ONGOING SERVICE

Mainten	ance Products	5	
Product	Designation	Fields of Application	Purpose
OKS 2800 OKS 2801*	Leak Detector		Location of leaks on pressurised lines, fittings and containers Formation of bubbles indicates loss of gas For universal use Non-toxic For use on pneumatic, oxygen and gas systems as well as refrigerating machines
OKS 2811	Leak Detector, frost-proof		Location of leaks on pressurised lines, fittings and containers down to -15°C Formation of bubbles indicates loss of gas For universal use Non-toxic For use on pneumatic, oxygen and gas systems as well as refrigerating machines
OKS 2901	Belt Tuning	B	Increases belt tension force Prevents slip Protects belt against drying out and wearing Increases service life Prevents squeaking For universal use on all V-belts, round and flat belts

Maintenance	Products

	Maintenance Products		
Properties / Approvals	Main Components	Application tips	Packaging
Approval under DIN DVGW Mark of conformity NG 5170AO0659	transparent active ingredients corrosion protection water	Wetting of area to be checked with air spray system, brush or by spraying on. Formation of bubbles indicates leaks. Protect against frost. When using on polyamide lines, wash off product with water afterwards. Operating temperature: 0°C → +80°C.	5 I canister 25 I canister 400 ml aerosol*
Approval under DIN DVGW Mark of conformity NG 5170BL0103	white active ingredients corrosion protection water	Wetting of area to be checked with hand sprayer, brush or by spraying on. Formation of bubbles indicates leaks. When using on polyamide lines, wash off with water afterwards. Operating temperature: -15°C → +70°C.	400 ml aerosol
	yellowish adhesive oil solvent	For optimum adhesion, clean belt mechanically and with OKS 2611. Spray belt evenly. Allow to soak in for 30 min before operating. Repeat as necessary. Check compatibility with plastic before use. Operating temperature: up to +80°C.	400 mi aerosol

CLEANERS FOR THOROUGH REMOVAL OF SOILING AND LUBRICANT RESIDUES

Product	Designation	Fields of Application	Purpose
OKS 2610 OKS 2611*	Universal Cleaner		For machine parts and surfaces with oily or greasy soiling Evaporates quickly and residue-free High cleaning power No undercooling Cleaner for lubrication and glueing points
OKS 2621	Contact Cleaner		To remove soiling that can cause creepage currents No running thanks to fast evaporation Contains no chlorinated hydrocarbons For example, for cleaning distribution boards, switches, relays, potentiometers, plug-in connections, sliding and screw contacts
OKS 2631 New	Multi-Foam Cleaner, Spray		Removes firmly adhering organic soiling such as nicotine, fat and silicone films Cleans metals, plastics, glass and rubber in the gastronomy, office and vehicle fields gently and without leaving stripes Ideally suitable for vertical surfaces
OKS 2650	BIOlogic Industrial Cleaner, water-based concentrate		Aqueous cleaner for removing heavy oily, greasy and sooty soiling Biodegradable Good separation behaviour Gentle to delicate surfaces For universal use in industry, workshop and food processing technology
OKS 2660 OKS 2661*	Fast Cleaner		For machine parts and surfaces with oily or greasy soiling Evaporates quickly and residue-free High cleaning power Ideal for preparation of bonded connections and cleaning of lubricating points Brake cleaner

			Cleaners
Properties / Approvals	Main Components	Application tips	Packaging
	colourless corrosion protection additives solvent mixture	Generously wet or spray the surfaces to be cleaned from a short distance and rub down with cloths if necessary. Then allow to dry approx. 1 min at room temperature. Check resistance of plastics and paintwork before using.	5 canister 25 canister 25 drum 200 drum 500 ml aerosol*
RECTROUP)	colourless solvent mixture	Switch off voltage and discharge electrostatic charging before use. Spray until desired cleanliness is achieved. Due to the wide variety of plastics used in electrical engineering, check plastics for corresponding resistance before use.	400 ml aerosol
	slightly bluish anionic surfactants additives	Spray on evenly from a distance of about 20 – 30 cm. Wipe off with a clean cloth. In the case of special coating check for compatibility.	400 ml aerosol
Stress crack test to DIN EN ISO 22088-3 passed			
NSF.	red non-ionic surfactants	Depending on the degree of soiling, can be diluted with water to a maximum of 1:10. pH value: 11.0 (concentrate)	500 ml pump sprayer 5 l canister 25 l canister 200 l drum
NSF A1 Reg. No. 129003			
	colourless solvent mixture	Generously spray the surfaces to be cleaned from a short distance and rub down with cloths if necessary. Then allow to dry approx. 1 min at room temperature. Check resistance of plastics and paintwork before using.	25 I canister 56 I drum 600 ml aerosol*

The economic and ecological alternative to the spray can

The pressure spray system consists of the Airspray can and a unit for filling the can with product and compressed air. The air serves as a harmless propellant gas. OKS products such as oil and cleaning agents can be processed by means of corresponding valves and spray heads.

Avoiding waste - reducing costs

The OKS Airspray-System prevents waste and reduces costs. Disposal cost that would arise if spray cans were used, are reduced. A small investment in environmental protection that pays off rapidly.

Robust and safe

The indestructible Airspray can was developed specially for rough usage in industrial operation and in workshops. In order to ensure that the specified hazardous substances marking and a clear assignment of the filled can to the product are fulfilled, corresponding product labels are included in the product-specific spray sets.

Spray can Cost reduction Break even 25 spray cans Airspray system Consumption

Cost efficiency calculation for OKS 2610 Universal Cleaner

Proven and favourable

Whether in the workshop or in industrial maintenance. For more than 10 years the Airspray-System has proven itself as the trouble-free and inexpensive alternative to the spray can.

OKS Airspray filling station in comparison to conventional spray can

A comparison of the cost effectiveness of the OKS Airspray-System with the use of conventional OKS 2611 spray cans shows that a cost reduction through the use of the OKS Airspray-System already results after the use of 25 spray cans.

OKS AIRSPRAY-SYSTEM

System components and products

Filling station for use in workshops

The filling station allows simple filling of the Airspray can with compressed air. It is suitable for fixed mounting for example near the product location or at the workplace.

How to do it: Fill the product into the Airspay can, insert the rising tube with adapter, place the valve

with spray head onto the adapter and screw handtight with the union nut. Place the can with the valve on the filling station, press down for approx. 2 s. Ready to spray.

The automatic filling unit allows filling of the Airspray can with product and compressed air in one pass.

How to do it: The automatic filling unit is connected to the product container through the suction line. The Airspray can is pressed into the "Active substance-air tapping point" (red) for filling. The

can can be filled or refilled with compressed air through the additional "Air tapping point" (black).

Airspray spray sets

A suitable spray set is available for every OKS product that it can be used with. This is also available separately as a spare part. The spray set consists of two valves with rising tube, two identical spray heads and product labels for clear assignment of the filled can (or of the automatic filling unit) to the OKS product used.

Drain cocks

Reusable drain cocks for filling into the Airspray can without dripping or leaking, suitable for all 5 I and 25 I OKS plastic canisters.

The following OKS products are suitable for use with the Airspray-System

- ☐ OKS 370
- ☐ OKS 370
- ☐ OKS 600
- ☐ OKS 640
- ☐ OKS 700
- □ OKS 2610
- □ OKS 2660
- ☐ OKS 2800

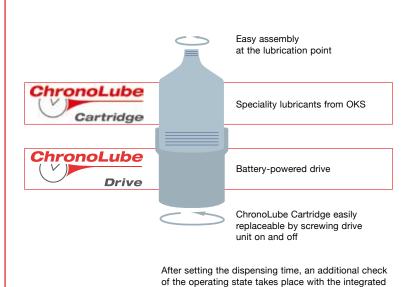
The OKS Airspray-System on Youtube.

OKS CHRONOLUBE-SYSTEM

Electromechanical lubricating systems – automatic and independent of temperature

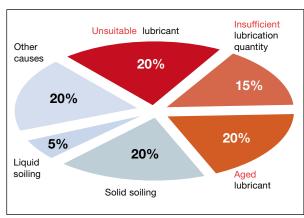
ChronoLube is the ideal combination of OKS speciality lubricants with an electromechanical lubricator. This enables the automatic supply of lubricating points with oil and grease. In the dosage you require and at the right time – without under- or over-lubrication.

Simply install the ChronoLube Drive together with the suitable ChronoLube Cartridge at the lubricating point and set the dispensing time (1, 3, 6, 12 months) in accordance with your requirements.


Whether lubricating point that is difficult to reach, strong vibrations or extremely high ambient temperatures, OKS can provide you with the right accessories for trouble-free use of the ChronoLube-System. We will be pleased to advise in detail.

ChronoLube, the ideal lubrication system for:

- □ Roller bearings
- □ Friction bearings□ Chains
- ☐ Open gears
- □ etc.


Highlights

- □ Operating temperature -10°C to +50°C
- □ Continuous fill level monitoring with transparent housing
- ☐ 4 dispensing types can be set (1, 3, 6 or 12 months)
- ☐ Dispensing duration individually adjustable when changing cartridge
- □ Display of operating state with LED display (e.g. operation, empty, fault)
- □ Reusable drive
- ☐ Replaceable battery set

LED display.

Causes of failure of roller bearings

Manual relubrication – Theory ChronoLube lubrication Manual relubrication – Reality Period of use Lifetime lubrication ChronoLube lubrication Period of use

Comparison: Automatic vs. manual relubrication

Avoid damage and save cost

Continuous, automatically controlled lubrication by ChronoLube mainly prevents: annoying, expensive production downtimes. Thanks to precise, individually adjusted lubricant dosage, a sudden standstill or frequent maintenance intervals due to poor lubrication are now a thing of the past.

Comparison of lubrication systems

ChronoLube is highly superior to manual relubrication and lifetime lubrication with regard to precision and reliability.

The ChronoLube-System is identified by this sign.

LUBRICATING DEVICES FOR PRACTICAL USE

Solutions for continuous use in industry

Lever grease gun

The practical grease gun for reliable, economical application of greases. Thanks to its well thought-out design and rugged construction, it stands up under even the toughest conditions. Available separately or in the Lubricating Set (20 cartridges of OKS 400 or OKS 470 including a lever grease gun).

Sprayboy

Together with the spray can, the Sprayboy becomes the perfect spraying device. It enables simple, fatigue-free handling and exact, controlled dosing of the spray mist. (Suitable for all OKS standard spray cans with a size of 300 ml or bigger. Do not use together with Airspray can).

WHAT YOU CAN EXPECT FROM OKS – PERFORMANCE THAT MOVES

Maximum product quality, active occupational health and safety and consistent environmental protection

These three factors form the major factors for the sustainable success of our company and our industrial and commercial customers worldwide.

OKS is oriented towards the development, production and sales of lubricants, maintenance and corrosion protection products of the highest possible quality. Our focus lies on customers who are satisfied with our products and our performance.

All employees are committed to the high quality, environmental protection and work protection demands. Continues personnel development results in active participation in implementing the corresponding targets.

Our high quality and environmental standards are already ingrained in our product development. Environmental protection and the user's safety have the greatest priority for us. Not only through our environmentally conscious company management, but in particular through the development of state-of-the-art lubricants do we contribute to a marked reduction of the negative environmental impact caused by technical factors.

We utilise modern production processes in manufacturing our products. In safe and environmentally friendly production processes we keep the effect on man and environment as small as possible.

In cooperation with our local sales partners we place great emphasis on qualification and thus ensure excellent consulting services and competence in solving problems locally.

Our participation in the initiative "We all take care", an initiative of the Freudenberg Group for environmental and work protection and for the reduction of occupational accidents, is further proof that our goals are corporate practice.

The high OKS quality standard is proven by our certification by the TÜV SÜD Management Service GmbH in the fields of quality (ISO 9001:2008), environment (ISO 14001:2004) and work protection (OHSAS 18001:2007).

Over 150 high-performance products from one supplier

- Pastes for easy assembly and dismantling
- Oils with high-performance additives for reliable lubrication
- □ Greases for long-term lubrication under critical operation conditions
- Dry lubricants the alternative for special application cases
- Corrosion protection for reliable preservation during storage and shipping
- ☐ Maintenance products for ongoing
- ☐ Cleaners for thorough removal of soiling and lubricant residues

For your company's individual lubrication requirements please contact OKS.

OKS Spezialschmierstoffe GmbH

Ganghoferstr. 47 D-82216 Maisach Phone +49 (0) 8142 3051-500 Fax +49 (0) 8142 3051-599

info@oks-germany.com www.oks-germany.com

A company of the Freudenberg Group

CONSULTING AND SALES

The information in this publication reflect state-of-the-art technology, as well as extensive testing and experience. Due to the diversity of possible applications and technical realities, they can only serve as recommendations and are not arbitrarily transferable. Therefore, no obligations, liability or warranty claims can be derived from them. We only accept liability for the suitability of our products for particular purposes, and for certain properties of our products, in the event that we have accepted such liability in writing in the individual case. Any case of justified warranty claims shall be limited to the delivery of replacement goods free of defects or, in the event that this subsequent improvement fails, to reimbursement of the purchase price. Any and all further claims, in particular the liability for consequential injuries or damage, shall always be excluded. **Prior to use, the customer must conduct its own testing to prove suitability.** No liability accepted for spelling mistakes, typing errors, miscalculations and translation errors. The data are subject to change for the sake of progress.

1137120000 1301 En 4 4 1 7 Concept/Realisation www.k1a-ma ©OKS Spezialschmierstoffe GmbH